百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python机器学习:机器学习模型评价-交叉验证与留一验证

off999 2024-12-22 20:08 20 浏览 0 评论

一篇文章写清楚一个问题,关注我,自学python!

解决一个机器学习问题都是从问题建模开始,我们首先要收集问题资料,深入理解问题后将其抽象成机器可预测的问题。那么我们的学习模型表现究竟怎么样,该如何进行评估呢?今天就给大家写一写交叉验证与留一验证。

交叉验证

交叉验证有时也称为交叉比对,如:10折交叉比对。

交叉验证是一种统计学上将数据样本切割成较小子集的实用方法。首先在一个子集上做训练, 而其它子集则用来做后续对此分析的确认及验证。

为什么需要交叉验证呢?

假设有一个未知模型有一个或者多个未知的参数,并且有一个训练集。训练模型的过程就是对该模型的参数进行调整,使得该模型能够最大的反映出训练集的特征。

但是我们常常会因为训练集过小或者参数不合适而产生过度拟合的情况,测试集的测试效果就可以将这种过拟合验证出来。验证一次不够呀,这时我们就将样本循环分为训练集和测试集,而可以从多个角度去学习样本,避免陷入局部的极值。这就是交叉验证,在这个过程中,无论是训练样本还是测试样本都得到了尽可能多的学习。

一句话:交叉验证让学习更加透彻!

为了保证交叉验证结果的稳定性,对一个样本数据集需要多次不同的划分,得到不同的互补子集,进行多次交叉验证。取多次验证的平均值作为验证结果。

留一验证

留一法就是每次只留下一个样本做测试集,其它样本做训练集,如果有k个样本,则需要训练k次,测试k次。

如果设原始数据有N个样本,那么每个样本单独作为验证集,其余的N-1个样本作为训练集,留一验证会得到N个模型,用这N个模型最终的验证集的分类准确率的平均数作为性能指标。

k折交叉验证python实例操作

首先给大家带来一个10折交叉验证,代码如下:

import pandas as pd
col = ["num_preg", "plasma_glucose_conc", "D_blood_pressure", "skin_fold_thickness", "serum_insulin", "body_mass_index", "pedigree_func", "age", "diabetes"]
diabetes_data = pd.read_csv("dataset/diabetes.txt", names = col)

X = diabetes_data.drop('diabetes', axis = 1)
y = diabetes_data.diabetes


from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3)

from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(max_iter=1000)
mlp.fit(x_train, y_train)

from sklearn.model_selection import cross_validate
cv_results = cross_validate(mlp, X, y, cv=10, scoring=["accuracy", "precision", "recall"])
cv_results

解释一下以上代码,首先读入数据(关注后私信获取),然后指定值和标签,然后划分训练集和测试集,然后训练模型(此处我训练了一个多层感知机模型,模型训练见之前文章),然后进行交叉验证。

此例子,我进行了10折,大家可以修改cv参数换成别的折。通过以下代码即可得到10折交叉验证后模型的平均准确度、精确度、召回率。

print("Accuracy: ", cv_results["test_accuracy"].mean())
print("Precision: ", cv_results["test_precision"].mean())
print("Recall: ", cv_results["test_recall"].mean())


留一验证python实例操作

from sklearn.model_selection import LeaveOneOut

cv_results = cross_validate(mlp, X, y,
                            cv=LeaveOneOut(), scoring=["accuracy"])
cv_results

import LeaveOneOut后同样还是改变cv参数为LeaveOneOut即可以实现留一验证,这个验证非常耗时间,我电脑跑这个用了快10分钟,大家可以试试看,得到结果如下图:


最后我们可以输出留一验证的平均模型正确率:

cv_results['test_accuracy'].mean()


小结

今天给大家介绍了机器学习模型验证的交叉验证与留一验证及代码实现方法。感谢大家耐心看完。发表这些东西的主要目的就是督促自己,希望大家关注评论指出不足,一起进步。内容我都会写的很细,用到的数据集也会在原文中给出链接,你只要按照文章中的代码自己也可以做出一样的结果,一个目的就是零基础也能懂,因为自己就是什么基础没有从零学Python的,加油。

(站外链接发不了,请关注后私信回复“数据链接”获取本头条号所有使用数据)

往期内容:

python机器学习:如何储存训练好的模型并重新调用

python机器学习:分类问题学习模型的评价方法及代码实现

相关推荐

独家 | 5 个Python高级特性让你在不知不觉中成为Python高手

你已经使用Python编程了一段时间,编写脚本并解决各种问题。是你的水平出色吗?你可能只是在不知不觉中利用了Python的高级特性。从闭包(closure)到上下文管理器(contextmana...

Python装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

中高阶Python常规用法--上下文管理器

Python以简单性和通用性著称,是一种深受全球开发人员喜爱的编程语言。它提供了大量的特性和功能,使编码成为一种愉快的体验。在这些功能中,一个经常被新手忽视的强大工具是上下文管理器。上下文管理器是高...

Python小案例67- 装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

python常用的语法糖

概念Python的语法糖(SyntacticSugar)是指那些让代码更简洁、更易读的语法特性,它们本质上并不会增加新功能,但能让开发者更高效地编写代码。推导式写法推导式是Python最经典的...

python - 常用的装饰器 decorator 有哪些?

python编程中使用装饰器(decorator)工具,可以使代码更简洁清晰,提高代码的重用性,还可以为代码维护提供方便。对于python初学者来说,根据装饰器(decorator)的字面意思并不...

python数据缓存怎么搞 ?推荐一个三方包供你参考,非常简单好用。

1.数据缓存说明数据缓存可以说也是项目开发中比不可少的一个工具,像我们测试的系统中,你都会见到像Redis一样的数据缓存库。使用缓存数据库的好处不言而喻,那就是效率高,简单数据直接放在缓存中...

用于时间序列数据的Graphite监视工具

结合第三方工具,Graphite为IT性能监控提供了许多好处。本文介绍其核心组件,包括Carbon、Whisper以及安装的基本准则。Graphite监视工具可实时或按需,大规模地绘制来自多个来源的时...

Python3+pygame实现的坦克大战

一、显示效果二、代码1.说明几乎所有pygame游戏,基本都遵循一定的开发流程,大体如下:初始化pygame创建窗口while循环检测以及处理事件(鼠标点击、按键等)更新UI界面2.代码创建一个m...

Python之鸭子类型:一次搞懂with与上下文装饰器

引言在鸭子类型的理念的基础之上,从关注类型,转变到关注特性和行为。结合Python中的魔法函数的体系,我们可以将自定义的类型,像内置类型一样被使用。今天这篇文章中,接着该话题,继续聊一下with语法块...

Python必会的50个代码操作

学习Python时,掌握一些常用的程序操作非常重要。以下是50个Python必会的程序操作,主要包括基础语法、数据结构、函数和文件操作等。1.HelloWorldprint("Hello,...

一文掌握Python 中的同步和异步

同步代码(Sync)同步就像在一个流水线上工作,每个任务都等待前一个任务完成。示例:机器A切割钢板→完成后,机器B钻孔→完成后,机器C上色。在Python中,同步代码看起来像这样:im...

python 标注模块timeit: 测试函数的运行时间

在Python中,可以使用内置的timeit模块来测试函数的运行时间。timeit模块提供了一个简单的接口来测量小段代码的执行时间。以下是使用timeit测试函数运行时间的一般步骤:导入...

Python带你找回童年的万花尺

还记得小时候的万花尺吧?这么画:一点也不费脑筋,就可以出来这么多丰富多彩的复杂几何图形。具体而言,可以用万花尺玩具(如图2-1所示)来绘制数学曲线。这种玩具由两个不同尺寸的塑料齿轮组成,一大一小。小的...

Python 时间模块深度解析:从基础到高级的全面指南

直接上干货一、时间模块核心类介绍序号类名说明1datetime.datetime表示一个具体的日期和时间,结合了日期和时间的信息。2datetime.date表示一个具体的日期。3datetime.t...

取消回复欢迎 发表评论: