百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

「爬虫+情感判定+Top10高频词+词云图」热门弹幕python舆情分析

off999 2024-12-30 06:05 33 浏览 0 评论

一、背景介绍

最近一段时间,刘畊宏真是火出了天际,引起一股全民健身的热潮,毕竟锻炼身体,是个好事!

针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众多网友弹幕的舆论导向,下面我们来看一下,是如何实现的分析过程。

二、代码讲解-爬虫部分

2.1 分析弹幕接口

首先分析B站弹幕接口。

经过分析,得到的弹幕地址有两种:

第一种:http://comment.bilibili.com/{cid}.xml
第二种:https://api.bilibili.com/x/v1/dm/list.so?oid={cid}

这两种返回的结果一致!但都不全,都是只有部分弹幕!

以B站视频 https://www.bilibili.com/video/BV1Pa411v7vg 为例,查看网页源代码,可以找到对应的cid为574147025,所以该视频对应的弹幕接口地址是:http://comment.bilibili.com/574147025.xml

既然这样,就好办了,开始撸代码!

2.2 讲解爬虫代码

首先,导入需要用到的库:

import re  # 正则表达式提取文本
import requests  # 爬虫发送请求
from bs4 import BeautifulSoup as BS  # 爬虫解析页面
import time
import pandas as pd  # 存入csv文件
import os

然后,向视频地址发送请求,解析出cid号:

r1 = requests.get(url=v_url, headers=headers)
html1 = r1.text
cid = re.findall('cid=(.*?)&aid=', html1)[0]  # 获取视频对应的cid号
print('该视频的cid是:', cid)

根据cid号,拼出xml接口地址,并再次发送请求:

danmu_url = 'http://comment.bilibili.com/{}.xml'.format(cid)  # 弹幕地址
print('弹幕地址是:', danmu_url)
r2 = requests.get(danmu_url)

解析xml页面:标签的文本内容为弹幕,标签内p属性值(按逗号分隔)的第四个字段是时间戳:

soup = BS(html2, 'xml')
danmu_list = soup.find_all('d')
print('共爬取到{}条弹幕'.format(len(danmu_list)))
video_url_list = []  # 视频地址
danmu_url_list = []  # 弹幕地址
time_list = []  # 弹幕时间
text_list = []  # 弹幕内容
for d in danmu_list:
	data_split = d['p'].split(',')  # 按逗号分隔
	temp_time = time.localtime(int(data_split[4]))  # 转换时间格式
	danmu_time = time.strftime("%Y-%m-%d %H:%M:%S", temp_time)
	video_url_list.append(v_url)
	danmu_url_list.append(danmu_url)
	time_list.append(danmu_time)
	text_list.append(d.text)
	print('{}:{}'.format(danmu_time, d.text))

保存时应注意,为了避免多次写入csv标题头,像这样:

这里,我写了一个处理逻辑,大家看注释,应该能明白:

if os.path.exists(v_result_file):  # 如果文件存在,不需写入字段标题
	header = None
else:  # 如果文件不存在,说明是第一次新建文件,需写入字段标题
	header = ['视频地址', '弹幕地址', '弹幕时间', '弹幕内容']
df.to_csv(v_result_file, encoding='utf_8_sig', mode='a+', index=False, header=header)  # 数据保存到csv文件

需要注意的是,encoding参数赋值为utf_8_sig,不然csv内容可能会产生乱码,避免踩坑!

三、代码讲解-情感分析部分

3.1 整体思路

针对情感分析需求,我主要做了三个步骤的分析工作:

用SnowNLP给弹幕内容打标:积极、消极,并统计占比情况
用jieba.analyse分词,并统计top10高频词
用WordCloud绘制词云图
首先,导入csv数据,并做数据清洗工作,不再赘述。

下面,正式进入情感分析代码部分:

3.2 情感分析打标

情感分析计算得分值、分类打标,并画出饼图。

# 情感判定
for comment in v_cmt_list:
	tag = ''
	sentiments_score = SnowNLP(comment).sentiments
	if sentiments_score < 0.5:
		tag = '消极'
		neg_count += 1
	elif sentiments_score > 0.5:
		tag = '积极'
		pos_count += 1
	else:
		tag = '中性'
		mid_count += 1
	score_list.append(sentiments_score)  # 得分值
	tag_list.append(tag)  # 判定结果
df['情感得分'] = score_list
df['分析结果'] = tag_list

这里,我设定情感得分值小于0.5为消极,大于0.5为积极,等于0.5为中性。(这个分界线,没有统一标准,根据数据分布情况和分析经验自己设定分界线即可)

情感判定结果:

画出占比饼图的代码:

grp = df['分析结果'].value_counts()
print('正负面评论统计:')
print(grp)
grp.plot.pie(y='分析结果', autopct='%.2f%%')  # 画饼图
plt.title('刘畊宏弹幕_情感分布占比图')
plt.savefig('刘畊宏弹幕_情感分布占比图.png')  # 保存图片

饼图结果:

从占比结果来看,大部分网友还是很认可刘畊宏的。

3.3 统计top10高频词

代码如下:

# 2、用jieba统计弹幕中的top10高频词
keywords_top10 = jieba.analyse.extract_tags(v_cmt_str, withWeight=True, topK=10)
print('top10关键词及权重:')
pprint(keywords_top10)

这里需要注意,在调用jieba.analyse.extract_tags函数时,要导入的是import jieba.analyse 而不是 import jieba

统计结果为:(分为10组关键词及其权重,权重按倒序排序)

3.4 绘制词云图

注意别踩坑:

想要通过原始图片的形状生成词云图,原始图片一定要白色背景(实在没有的话,PS修图修一个吧),否则生成的是满屏词云!!

try:
	stopwords = v_stopwords  # 停用词
	backgroud_Image = np.array(Image.open('刘畊宏_背景图.png'))  # 读取背景图片
	wc = WordCloud(
		background_color="white",  # 背景颜色
		width=1500,  # 图宽
		height=1200,  # 图高
		max_words=1000,  # 最多字数
		font_path='/System/Library/Fonts/SimHei.ttf',  # 字体文件路径,根据实际情况(Mac)替换
		# font_path="C:\Windows\Fonts\simhei.ttf",  # 字体文件路径,根据实际情况(Windows)替换
		stopwords=stopwords,  # 停用词
		mask=backgroud_Image,  # 背景图片
	)
	jieba_text = " ".join(jieba.lcut(v_str))  # jieba分词
	wc.generate_from_text(jieba_text)  # 生成词云图
	wc.to_file(v_outfile)  # 保存图片文件
	print('词云文件保存成功:{}'.format(v_outfile))
except Exception as e:
	print('make_wordcloud except: {}'.format(str(e)))

得到的词云图,和原始背景图对比一下:

3.5 情感分析结论

  1. 打标结果中,积极和中性评价占约72%,远远大于消极评价!
  2. top10关键词统计结果中,"哈哈哈"、"打卡"、"加油"、"666"等好评词汇占据多数!
  3. 词云图中,"哈哈"、"打卡"、"厉害"、"加油"等好评词看上去更大(词频高)!
    综上所述,经分析"刘畊宏"相关弹幕,得出结论:

众多网友对刘畊宏的评价都很高,毕竟不但带领全面健身这样正能量的事,还是杰伦的好兄弟,谁能不爱呢!

给他点赞!!

四、同步演示视频

演示代码执行过程:
https://www.zhihu.com/zvideo/1506383713600036864

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: