微信聊天记录可视化工具详细介绍 微信2020聊天记录分析报告怎么弄
off999 2024-12-30 06:06 28 浏览 0 评论
功能概要
能做什么
用于对微信聊天记录进行可视化。
文本分析
双方聊天词汇的词云图
专属词汇分析(甲常用而乙不常用的词)
共用词汇分析(甲乙都喜欢用的词)
时间信息分析
月度消息数量变化
时均消息数量变化
下面这些图片都可以自动生成:
手机聊天记录同步到电脑
相信大部分小伙伴们的聊天记录都在手机里面,电脑的聊天记录不全。所以先把手机的聊天记录同步到电脑上,这个小伙伴们在换手机的时候可能有过体验:微信 - 设置 - 聊天 - 聊天记录迁移与备份 - 迁移。等个几分钟吧,等待时间取决于您的聊天记录量有多大。
软件界面操作
解密2:输入个人信息,获取信息。然后解密:开始启动!
然后就可以在好友中导出聊天记录了。为了减少乱码,请勿勾选图片、视频、表情包,导出的不含图片/视频/文件!
导出完毕,退出软件。在软件同一目录下会出现一个 data目录,点进去,data/聊天记录/ 下面会有个 csv 文件。大概长这个样子:
把这个csv文件拷贝到 WechatVisualization 的 input_data/ 目录里面。
注:使用软件的时候您可能会发现它也集成了导出年度报告这种分析+可视化的功能,但仔细看看它制作的年度报告就会发现太粗糙了,词云图的词语乱七八糟,没有做数据清洗。
安装python第三方库
使用者需要具备基本的 Python 知识(如何运行代码),电脑上已经安装了 Anaconda 或者 Python(版本>=3.7)。如果用 Anaconda,最好新建一个环境。
依次安装必要的第三方库:
安装方法不是本篇重点,基本上都是 pip install ,如果遇到问题请自行上网搜索解决方法,在此不赘。
修改配置文件
配置文件为 config.yml,用记事本就可以打开了,当然用代码编辑器更好,因为可以语法高亮。
里面可以自行设置的内容有
# 输入数据
# 下面这些文件都放在input_data目录下
# 聊天记录
msg_file: msg.csv
# 微信表情中英文对照表
emoji_file: emoji.txt
# 停用词表,一般是没有实际意义的词,不想让被分析到的词都放在这里
stopword_file: stopwords_hit_modified.txt
# 词语转换表,用于合并意义相近的词,比如把“看到”、“看见”、“看看”都转换为“看”
transform_file: transformDict.txt
# 用户自定义词典,用于添加大部分字典没有的、但自己觉得不能分开的词,如i人、e人、腾讯会议
user_dict_file: userDict.txt
# 名字
# name1是自己的名字
name1: person 1
# name2是对方的名字
name2: person 2
# name_both是双方共同的名字
name_both: both
# 局部参数
# top_k是绘制前多少个词
# 如果词或表情的出现频次低于word_min_count或emoji_min_count,就不会被分析
# figsize是绘图图窗尺寸,第一个是宽度,第二个是高度
word_specificity:
top_k: 25
word_min_count: 2
figsize:
- 10
- 12
emoji_specificity:
emoji_min_count: 1
top_k: 5
figsize:
- 10
- 12
word_commonality:
top_k: 25
figsize:
- 10
- 12
emoji_commonality:
top_k: 5
figsize:
- 12
- 12
time_analysis:
figsize:
- 12
- 8运行代码
可以在代码编辑器中直接运行 main.py,也可以在命令行中(先激活之前创建的环境)运行 python main.py。
成功运行应显示如下信息:
生成的图片可以在当前目录的 figs 文件夹中找到。
修改输入文件
查看生成的图片,可能会有些词不是自己想要的,抑或有些自己想要的词被拆分了,此时到 input_data/ 目录下面修改各文件即可。这是一个不断迭代的过程,也就是数据清洗,比较耗时间。但没办法,如果想要质量比较高的结果,就耐心好好做一下,把数据清洗干净。
emoji.txt 是微信表情的中英文对照。微信表情在聊天记录中是以[捂脸]或者[Facepalm]的形式呈现的。我的聊天记录里面中英文的[xxx]都有,所以建立一个对照表,把所有的英文都替换成中文。如果您发现有的表情文字还是英文,可以在里面添加其中文,以便合并。 stopwords_hit_modified.txt 是停用词表。诸如“现在”、“进行”、“好像”这种(我自认为)没有实际意义的词,不应该被统计,直接把它们剔除。如果你觉得生成的结果里面有你不想看到的词,可以在这里添加。 transformDict.txt 把一些词转换成另一些词。诸如“看到”、“看见”、“看”、“看看”这些同义词可能被分别统计,完全没必要,我们可以把它们合并为一个词“看”。为此,只需在两栏中分别填写原词与转换词即可。注意,两栏用的是制表符(Tab)隔开。 usreDict 可以添加传统词典中没有的词,比如 “e人”、“i人”、“腾讯会议”等。如果不自行添加这些词,后果是它们可能会被拆成“e”、“i”、“人”、“腾讯”、“会议”这些词,这不是我们希望看到的。
报错解决
ValueError: shape mismatch: objects cannot be broadcast to a single shape
ValueError: The number of FixedLocator locations (5), usually from a call to set_ticks, does not match the number of ticklabels (1).
可能原因:出现上面两个报错,可能是因为相应位置的top_k或者min_count设置得太大了,而聊天记录量太少,导致没有这么多词可以绘制。
解决方法:考虑到这一点,我在每一小段程序运行时都打印了允许设置的最大参数值。如果打印双横线,代表该段参数设置无误,程序运行成功。您可以检查一下自己在相应位置的参数是否设置得太大了,然后适当减小。
项目流程
- parse.py 读取 input_data/ 中的文件,执行分词。生成 keywords.csv 放入 temp_files/ ,里面在原数据基础上新增两列,一列是被拆分的词,一列是提取出的微信表情。
- word_cloud.py 计算词频,生成 pickle 文件 keyword_count.pkl 放入 temp_files/ ,同时制作词云放入 figs/。
- 利用上一步计算的词频,计算词语专属性。图片放入 figs/。
- 计算微信表情出现频次,生成 pickle 文件 emoji_count.pkl 放入 temp_files/ 同时计算表情专属性。图片放入 figs/。
- 利用词频,计算词语共有性。图片放入 figs/。
- 利用表情频次,计算表情共有性。图片放入 figs/。
- 利用微信聊天记录原始文件,进行时间信息分析。图片放入 figs/。
- 计算方法
- 记自己发送过某个词 的次数为 ,对方发送过某个词 的次数为 。
专属性计算
专属性表明自己常说,对方不常说(反之亦然)。我对专属性的考虑是这样的,假如有三个词 A、B、C。
对于自己来说,显然A的专属性应该是最高的。B词的话,两个人虽然也是差了4次,但是基数比较大,差了4次其实无明显对比。C的话,基数太小,要说C是自己专属的词汇,可靠性不高。
共有性计算
共用性表明两个人都常说某个词。所以首先排除那些有一方从来没说过的词。为此,首先对双方说过的词取交集。
现在我们还是假设有三个词 A、B、C。
B词被自己说过的次数比对方多得多,共有性显然很低。C词虽然双方说过的次数差不多,但基数太小,不能得出可靠结论。所以A词共有性最高。那怎么算呢?
共有性是专属性的反面,那我们能不能用专属性的倒数呢?我觉得不好,一方面因为分母是 ,容易出现零值;另一方面对于A词(50,50)和C词(1,1)不能做很好地区分。
为此,我使用了调和平均值:
为什么这里使用调和平均值而不使用其他平均值呢,因为调和平均值是四大平均值中最偏向较小数的那个,“共有性”就是强调两个人都要经常说,不能光一个人说另一个人不说,也即一方说得再多,对于共有性的影响也很小,比如B词(1000,1)。
用调和平均值可以确保A词具有最大的共有性。
以上就是微信聊天记录可视化工具的介绍,喜欢文章,关注小编,后期会有更多的科技资讯。
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
