Nginx之进程间的通信机制(共享内存、原子操作)
off999 2025-01-05 19:31 17 浏览 0 评论
1. 概述
详细教程资料+课件 关注+后台私信;资料;两个字可以免费视频领取+文档+各大厂面试题 资料内容包括:C/C++,Linux,golang,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,嵌入式 等。
Linux 提供了多种进程间传递消息的方式,如共享内存、套接字、管道、消息队列、信号等,而 Nginx 框架使用了 3 种传递消息的传递方式:共享内存、套接字、信号。
Nginx 主要使用了 3 种同步方式:原子操作、信号量、文件锁。
由于 Nginx 的每个 worker 进程都会同时处理千万个请求,所以处理任何一个请求时都不应该阻塞当前进程处理后续的其他请求。
2. 共享内存
共享内存是 Linux 下提供的最基本的进程间通信方法,它通过 mmap 或者 shmgat 系统调用在内存中创建了一块连续的线性地址空间,而通过 munmap 或者 shmdt 系统调用可以释放这块内存。
虽然 mmap 可以以磁盘文件的方式映射共享内存,但在 Nginx 封装的共享内存操作方法中是没有使用到映射文件功能的。
Nginx 定义了 ngx_shm_t 结构体,用于描述一块共享内存:
typedef struct {
/* 执行共享内存的起始地址 */
u_char *addr;
/* 共享内存的长度 */
size_t size;
/* 这块共享内存的名称 */
ngx_str_t name;
/* 记录日志的 ngx_log_t 对象 */
ngx_log_t *log;
/* 表示共享内存是否已经分配过的标志位,为 1 时表示已经存在 */
ngx_uint_t exists; /* unsigned exists:1 */
}ngx_shm_t;
操作 ngx_shm_t 结构体的方法有以下两个:
- ngx_shm_alloc:用于分配新的共享内存;
- ngx_shm_free:用于释放已经存在的共享内存。
详细教程资料+课件 关注+后台私信;资料;两个字可以免费视频领取+文档+各大厂面试题 资料内容包括:C/C++,Linux,golang,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,嵌入式 等。
mmap 系统调用简述
void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset);
mmap 可以将磁盘文件映射到内存中,直接操作内存时 Linux 内核将负责同步内存和磁盘文件中的数据:
- fd 参数就指向需要同步的磁盘文件
- offset 则代表从文件的这个偏移量开始共享。
- 当 flags 参数中加入 MAP_ANON 或者 MAP_ANONYMOUS 参数时表示不使用文件映射方式,这时 fd 和 offset 参数就没有意义了,也不需要传递,此时的 mmap 方法和 ngx_shm_alloc 的功能几乎完全相同。
- length 参数就是将要在内存中开辟的线性地址空间大小。
- prot 参数则是操作这段共享内存的方式(如只读或可读可写)。
- start 参数说明希望的共享内存起始映射地址,通常设为 NULL,即由内存选择映射的起始地址。
MAP_ANON 是 MAP_ANONYMOUS 的同义词,已过时。表示不使用文件映射方式,并且共享内存被初始化为0,因此忽略 mmap 中的 fd 和 offset 参数,但是为了可移植性,当 MAP_ANONYMOUS(或 MAP_ANON)被指定时,fd 应该设置为 -1。
如下为使用 mmap 实现的 ngx_shm_alloc 方法:
ngx_int_t ngx_shm_alloc(ngx_shm_t *shm) { /* 开辟一块 shm->size 大小且可读/写的共享内存,内存首地址存放在 shm->addr 中 */ shm->addr = (u_char *)mmap(NULL, shm->size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0); if (shm->addr == MAP_FAILED) { ngx_log_error(NGX_LOG_ALERT, shm->log, ngx_errno, "mmap(MAP_ANON|MAP_SHARED, %uz) failed", shm->size); return NGX_ERROR; } return NGX_OK; }
当不在使用共享内存时,需要调用 munmap 或者 shmdt 来释放共享内存:
- start:指向共享内存的首地址
- length:表示这段共享内存的长度
Nginx 的 ngx_shm_free 方法封装了该 munmap 方法
void ngx_shm_free(ngx_shm_t *shm) { if (munmap((void*) shm->addr, shm->size) == -1) { ngx_log_error(NGX_LOG_ALERT, shm->log, ngx_errno, "munmap(%p, %uz) failed", shm->addr, shm->size); } }
Nginx 各进程间共享数据的主要方式就是使用共享内存(在使用共享内存时,Nginx 一般是由 master 进程创建,在 master 进程 fork 出 worker 子进程后,所有的进程开始使用这块内存中的数据)。
Nginx 的共享内存有三种实现:
- 不映射文件使用 mmap 分配共享内存(即上面的代码)
- 以 /dev/zero 文件使用 mmap 映射共享内存
- 用 shmget 调用来分配共享内存
3. 原子操作
原子操作(atomic operation)指的是由多步操作组成的一个操作。如果该操作不能原子地执行,则要么执行完所有步骤,要么一步也不执行,不可能只执行所有步骤的一个子集。
typedef volatile ngx_atomic_uint_t ngx_atomic_t;
Nginx 提供了两个方法来修改原子变量的值.
ngx_atomic_cmp_set
static ngx_inline ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
ngx_atomic_uint_t set)
该方法会将 old 参数与原子变量 lock 的值进行比较,若相等,则将 lock 设为参数 set,同时返回 1;若不等,则直接返回 0。
ngx_atomic_fetch_add
static ngx_inline ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add)
该方法会把原子变量 value 的值加上参数 add,同时返回之前 value 的值。
由于各种硬件体系架构,原子操作的实现不尽相同,如下为 Nginx 基于几个硬件体系关于原子操作的实现。
当无法实现原子操作时,就只能用 volatile 关键字在 C 语言级别上模拟原子操作了。事实上,绝大多数体系架构都支持原子操作。
ngx_atomic_cmp_set 的实现如下:
static ngx_inline ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
ngx_atomic_uint_t set)
{
/* 当原子变量 lock 与 old 相等时,才能把 set 设置到 lock 中 */
if (*lock == old) {
*lock = set;
return 1;
}
/* 若 lock 与 set 不等,返回 0 */
return 0;
}
ngx_atomic_fetch_add 的实现如下:
static ngx_inline ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add)
{
ngx_atomic_int_t old;
/* 将原子变量 value 加上 add 后,返回原先 value 的值 */
old = *value;
*value += add;
return old;
x86 架构下的原子操作
gnu lib提供原子操作的实现
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
static int count = 0;
void *test_func(void *arg)
{
int i=0;
for(i=0;i<20000;++i){
// __sync_fetch_and_add(&count,1);
count ++;
}
return NULL;
}
int main(int argc, const char *argv[])
{
pthread_t id[20];
int i = 0;
for(i=0;i<20;++i){
pthread_create(&id[i],NULL,test_func,NULL);
}
for(i=0;i<20;++i){
pthread_join(id[i],NULL);
}
printf("%d\n",count);
return 0;
}
2.利用汇编自己实现
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#define LOCK "lock ; "
typedef struct { volatile int counter; } atomic_t;
static __inline__ void atomic_inc(atomic_t *v)
{
__asm__ __volatile__(
LOCK "incl %0"
:"=m" (v->counter)
:"m" (v->counter));
}
static atomic_t count = {0};
void *test_func(void *arg)
{
int i=0;
for(i=0;i<20000;++i){
atomic_inc(&count);
}
return NULL;
}
int main(int argc, const char *argv[])
{
pthread_t id[20];
int i = 0;
for(i=0;i<20;++i){
pthread_create(&id[i],NULL,test_func,NULL);
}
for(i=0;i<20;++i){
pthread_join(id[i],NULL);
}
printf("%d\n",count.counter);
return 0;
}
3.3 自旋锁
基于原子的操作,Nginx 实现了一个自旋锁。当发现锁已经被其他进程获得时,那么不会使得当前进程进入睡眠状态,始终保持进程的可执行状态,每当内核调度到这个进程执行时就持续检查是否可以获取到锁。
自旋锁主要是为多处理器操作系统而设置的,它要解决的共享资源保护场景就是进程使用锁的时间非常短(如果锁的使用时间很久,自旋锁就不合适,会占用大量的 CPU 资源)。如果使用锁的进程不太希望自己进入睡眠状态,特别它处理的是非常核心的事件时,这时就应该使用自旋锁,其实大部分情况下 Nginx 的 worker 进程最好不要进入睡眠状态,因为它非常繁忙,在这个进程的 epoll 上可能会有十万甚至百万的 TCP 连接等待着处理,进程一旦睡眠后必须等待其他事件的唤醒,这中间及其频繁的进程间切换带来的负载消耗可能无法让用户接受。
自旋锁对于单处理器操作系统来说一样是有效的,不进入睡眠状态并不意味着其他可执行状态的进程得不到执行。Linux 内核中对于每个处理器都有一个运行队列,自旋锁可以仅仅调整当前进程在运行队列中的顺序,或者调整进程的时间片,这都会为当前处理器上的其他进程提供被调度的机会,以使得锁被其他进程释放。
如下为 Nginx 实现的基于原子操作的自旋锁方法 ngx_spinlock:
void
ngx_spinlock(ngx_atomic_t *lock, ngx_atomic_int_t value, ngx_uint_t spin)
{
ngx_uint_t i, n;
// 无法获取锁时进程的代码将一直在这个循环中执行
for ( ;; ) {
// lock 为 0 表示锁是没有被其他进程持有的,这时将 lock 值设为 value
// 参数表示当前进程持有了锁
if (*lock == 0 && ngx_atomic_cmp_set(lock, 0, value)) {
// 获取到锁后 ngx_spinlock 方法才会返回
return;
}
// 该变量是处理器的个数,当它大于 1 时表示处理多处理器系统中
if (ngx_ncpu > 1) {
// 在多处理器下,更好的做法是当前进程不要立刻"让出"正在使用的 CPU
// 处理器,而是等待一段时间,看看其他处理器上的进程是否会释放锁,
// 这会减少进程间切换的次数
for (n = 1; n < spin; n <<= 1) {
// 注意,随着等待的次数越来越多,实际去检查 lock 是否被释放
// 的频繁会越来越小。为什么?因为检查 lock 值更消耗 CPU,
// 而执行 ngx_cpu_pause 对于 CPU 的能耗来说更为省电
for (i = 0; i < n; i++) {
// ngx_cpu_pause 是在许多架构体系中专门为了自旋锁而提供的
// 指令,它会告诉CPU现在处于自旋锁等待状态,通常一些CPU
// 会将自己置于节能状态,降低功耗。注意,在执行
// ngx_cpu_pause 后,当前进程没有 "让出" 正使用的处理器
ngx_cpu_pasue();
}
// 检查锁是否被释放了,如果 lock 值为0且释放了锁后,就把它的值设为
// value,当前进程持有锁成功并返回
if (*lock == 0 && ngx_atomic_cmp_set(lock, 0, value)) {
return;
}
}
}
// 当前进程仍然处理可执行状态,但暂时"让出"处理器,使得处理器优先调度其他
// 可执行状态的进程,这样,在进程被内核再次调度时,在 for 循环代码中可以期望
// 其他进程释放锁。注意,不同的内核版本对于 sched_yield 系统调用的实现可能
// 不同,但它们的目的都是暂时 "让出" 处理器
ngx_sched_yield();
}
}
总结:
释放锁时需要 Nginx 模块通过 ngx_atomic_cmp_set 方法将原子变量 lock 值设为 0。
详细教程资料+课件 关注+后台私信;资料;两个字可以免费视频领取+文档+各大厂面试题 资料内容包括:C/C++,Linux,golang,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,嵌入式 等。
相关推荐
- 如何理解python中面向对象的类属性和实例属性?
-
类属性和实例属性类属性就是给类对象中定义的属性通常用来记录与这个类相关的特征类属性不会用于记录具体对象的特征类属性的理解:类属性是与类自身相关联的变量,而不是与类的实例关联。它们通...
- Java程序员,一周Python入门:面向对象(OOP) 对比学习
-
Java和Python都是**面向对象编程(OOP)**语言,无非是类、对象、继承、封装、多态。下面我们来一一对比两者的OOP特性。1.类和对象Java和Python都支持面向对象...
- 松勤技术精选:Python面向对象魔术方法
-
什么是魔术方法相信大家在使用python的过程中经常会看到一些双下划线开头,双下划线结尾的方法,我们把它统称为魔术方法魔术方法的特征魔术方法都是双下划线开头,双下划线结尾的方法魔术方法都是pytho...
- [2]Python面向对象-【3】方法(python3 面向对象)
-
方法的概念在Python中,方法是与对象相关联的函数。方法可以访问对象的属性,并且可以通过修改对象的属性来改变对象的状态。方法定义在类中,可以被该类的所有对象共享。方法也可以被继承并重载。方法的语法如...
- 一文带你理解python的面向对象编程(OOP)
-
面向对象编程(OOP,Object-OrientedProgramming)是一个较难掌握的概念,而Python作为一门面向对象的语言,在学习其OOP特性时,许多人都会对“继承”和“多态”等...
- 简单学Python——面向对象1(编写一个简单的类)
-
Python是一种面向对象的编程语言(ObjectOrientedProgramming),在Python中所有的数据类型都是对象。在Python中,也可以自创对象。什么是类呢?类(Class)是...
- python进阶突破面向对象——四大支柱
-
面向对象编程(OOP)有四大基本特性,通常被称为"四大支柱":封装(Encapsulation)、继承(Inheritance)、多态(Polymorphism)和抽象(Abstrac...
- Python学不会来打我(51)面向对象编程“封装”思想详解
-
在面向对象编程(Object-OrientedProgramming,简称OOP)中,“封装(Encapsulation)”是四大核心特性之一(另外三个是继承、多态和抽象),它通过将数据(属性)和...
- Python之面向对象:对象属性解析:MRO不够用,补充3个方法
-
引言在前面的文章中,我们谈及Python在继承关系,尤其是多继承中,一个对象的属性的查找解析顺序。由于当时的语境聚焦于继承关系,所以只是简要提及了属性解析顺序同方法的解析顺序,而方法的解析顺序,在Py...
- Python之面向对象:通过property兼顾属性的动态保护与兼容性
-
引言前面的文章中我们简要提及过关于Python中私有属性的使用与内部“名称混淆”的实现机制,所以,访问私有属性的方法至少有3种做法:1、使用实例对象点操作符的方式,直接访问名称混淆后的真实属性名。2、...
- Python之面向对象:私有属性是掩耳盗铃还是恰到好处
-
引言声明,今天的文章中没有一行Python代码,更多的是对编程语言设计理念的思考。上一篇文章中介绍了关于Python面向对象封装特性的私有属性的相关内容,提到了Python中关于私有属性的实现是通过“...
- Python中的私有属性与方法:解锁面向对象编程的秘密
-
Python中的私有属性与方法:解锁面向对象编程的秘密在Python的广阔世界里,面向对象编程(OOP)是一种强大而灵活的方法论,它帮助我们更好地组织代码、管理状态,并构建可复用的软件组件。而在这个框...
- Python 面向对象:掌握类的继承与组合,让你的代码更高效!
-
引言:构建高效代码的基石Python以其简洁强大的特性,成为众多开发者首选的编程语言。而在Python的面向对象编程(OOP)范畴中,类的继承和组合无疑是两大核心概念。它们不仅能帮助我们实现代码复用,...
- python进阶-Day2: 面向对象编程 (OOP)
-
以下是为Python进阶Day2设计的学习任务,专注于面向对象编程(OOP)的核心概念和高阶特性。代码中包含详细注释,帮助理解每个部分的实现和目的。任务目标:复习OOP基础:类、对象、继...
- 外婆都能学会的Python教程(二十八):Python面向对象编程(二)
-
前言Python是一个非常容易上手的编程语言,它的语法简单,而且功能强大,非常适合初学者学习,它的语法规则非常简单,只要按照规则写出代码,Python解释器就可以执行。下面是Python的入门教程介绍...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python重命名文件 (54)
- python面向对象编程 (60)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)