百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

复工后一次百万长连接压测Nginx与OOM的问题排查分析,我裂开了!

off999 2025-01-05 19:31 22 浏览 0 评论

在最近的一次百万长连接压测中,32C 128G 的四台 Nginx 频繁出现 OOM,出现问题时的内存监控如下所示。

排查的过程记录如下。

现象描述

这是一个 websocket 百万长连接收发消息的压测环境,客户端 jmeter 用了上百台机器,经过四台 Nginx 到后端服务,简化后的部署结构如下图所示。



在维持百万连接不发数据时,一切正常,Nginx 内存稳定。在开始大量收发数据时,Nginx 内存开始以每秒上百 M 的内存增长,直到占用内存接近 128G,woker 进程开始频繁 OOM 被系统杀掉。32 个 worker 进程每个都占用接近 4G 的内存。dmesg -T 的输出如下所示。

[Fri Mar 13 18:46:44 2020] Out of memory: Kill process 28258 (nginx) score 30 or sacrifice child
[Fri Mar 13 18:46:44 2020] Killed process 28258 (nginx) total-vm:1092198764kB, anon-rss:3943668kB, file-rss:736kB, shmem-rss:4kB
复制代码

work 进程重启后,大量长连接断连,压测就没法继续增加数据量。

排查过程分析

拿到这个问题,首先查看了 Nginx 和客户端两端的网络连接状态,使用 ss -nt 命令可以在 Nginx 看到大量 ESTABLISH 状态连接的 Send-Q 堆积很大,客户端的 Recv-Q 堆积很大。Nginx 端的 ss 部分输出如下所示。

State      Recv-Q Send-Q Local Address:Port     Peer Address:Port
ESTAB      0      792024 1.1.1.1:80               2.2.2.2:50664
...
复制代码

在 jmeter 客户端抓包偶尔可以看到较多零窗口,如下所示。

到了这里有了一些基本的方向,首先怀疑的就是 jmeter 客户端处理能力有限,有较多消息堆积在中转的 Nginx 这里。

为了验证想法,想办法 dump 一下 nginx 的内存看看。因为在后期内存占用较高的状况下,dump 内存很容易失败,这里在内存刚开始上涨没多久的时候开始 dump。

首先使用 pmap 查看其中任意一个 worker 进程的内存分布,这里是 4199,使用 pmap 命令的输出如下所示。

pmap -x  4199 | sort -k 3 -n -r

00007f2340539000  475240  461696  461696 rw---   [ anon ]
...

随后使用 cat /proc/4199/smaps | grep 7f2340539000 查找某一段内存的起始和结束地址,如下所示。

cat /proc/3492/smaps  | grep 7f2340539000

7f2340539000-7f235d553000 rw-p 00000000 00:00 0

随后使用 gdb 连上这个进程,dump 出这一段内存。

gdb -pid 4199

dump memory memory.dump 0x7f2340539000 0x7f235d553000

随后使用 strings 命令查看这个 dump 文件的可读字符串内容,可以看到是大量的请求和响应内容。

这样坚定了是因为缓存了大量的消息导致的内存上涨。随后看了一下 Nginx 的参数配置,

location / {
    proxy_pass http://xxx;
    proxy_set_header    X-Forwarded-Url  "$scheme://$host$request_uri";
    proxy_redirect      off;
    proxy_http_version  1.1;
    proxy_set_header    Upgrade $http_upgrade;
    proxy_set_header    Connection "upgrade";
    proxy_set_header    Cookie $http_cookie;
    proxy_set_header    Host $host;
    proxy_set_header    X-Forwarded-Proto $scheme;
    proxy_set_header    X-Real-IP $remote_addr;
    proxy_set_header    X-Forwarded-For $proxy_add_x_forwarded_for;
    client_max_body_size        512M;
    client_body_buffer_size     64M;
    proxy_connect_timeout       900;
    proxy_send_timeout          900;
    proxy_read_timeout          900;
    proxy_buffer_size        64M;
    proxy_buffers            64 16M;
    proxy_busy_buffers_size        256M;
    proxy_temp_file_write_size    512M;
}

可以看到 proxy_buffers 这个值设置的特别大。接下来我们来模拟一下,upstream 上下游收发速度不一致对 Nginx 内存占用的影响。

模拟 Nginx 内存上涨

我这里模拟的是缓慢收包的客户端,另外一边是一个资源充沛的后端服务端,然后观察 Nginx 的内存会不会有什么变化。


缓慢收包客户端是用 golang 写的,用 TCP 模拟 HTTP 请求发送,代码如下所示。

package main

import (
	"bufio"
	"fmt"
	"net"
	"time"
)

func main() {
	conn, _ := net.Dial("tcp", "10.211.55.10:80")
	text := "GET /demo.mp4 HTTP/1.1\r\nHost: ya.test.me\r\n\r\n"

	fmt.Fprintf(conn, text)
	for ; ; {
		_, _ = bufio.NewReader(conn).ReadByte()
		time.Sleep(time.Second * 3)
		println("read one byte")
	}
}

在测试 Nginx 上开启 pidstat 监控内存变化

pidstat -p pid -r 1 1000

运行上面的 golang 代码,Nginx worker 进程的内存变化如下所示。

04:12:13 是 golang 程序启动的时间,可以看到在很短的时间内,Nginx 的内存占用就涨到了 464136 kB(接近 450M),且会维持很长一段时间。

同时值得注意的是,proxy_buffers 的设置大小是针对单个连接而言的,如果有多个连接发过来,内存占用会继续增长。下面是同时运行两个 golang 进程对 Nginx 内存影响的结果。

可以看到两个慢速客户端连接上来的时候,内存已经涨到了 900 多 M。

解决方案

因为要支持上百万的连接,针对单个连接的资源配额要小心又小心。一个最快改动方式是把 proxy_buffering 设置为 off,如下所示。

proxy_buffering off;

经过实测,在压测环境修改了这个值以后,以及调小了 proxy_buffer_size 的值以后,内存稳定在了 20G 左右,没有再飙升过,内存占用截图如下所示。

后面可以开启 proxy_buffering,调整 proxy_buffers 的大小可以在内存消耗和性能方面取得更好的平衡。

在测试环境重复刚才的测试,结果如下所示。

可以看到这次内存值增长了 64M 左右。为什么是增长 64M 呢?来看看 proxy_buffering 的 Nginx 文档(nginx.org/en/docs/htt…

When buffering is enabled, nginx receives a response from the proxied server as soon as possible, saving it into the buffers set by the proxy_buffer_size and proxy_buffers directives. If the whole response does not fit into memory, a part of it can be saved to a temporary file on the disk. Writing to temporary files is controlled by the proxy_max_temp_file_size and proxy_temp_file_write_size directives.

When buffering is disabled, the response is passed to a client synchronously, immediately as it is received. nginx will not try to read the whole response from the proxied server. The maximum size of the data that nginx can receive from the server at a time is set by the proxy_buffer_size directive.

可以看到,当 proxy_buffering 处于 on 状态时,Nginx 会尽可能多的将后端服务器返回的内容接收并存储到自己的缓冲区中,这个缓冲区的最大大小是 proxy_buffer_size * proxy_buffers 的内存。

如果后端返回的消息很大,这些内存都放不下,会被放入到磁盘文件中。临时文件由 proxy_max_temp_file_size 和 proxy_temp_file_write_size 这两个指令决定的,这里不展开。

当 proxy_buffering 处于 off 状态时,Nginx 不会尽可能的多的从代理 server 中读数据,而是一次最多读 proxy_buffer_size 大小的数据发送给客户端。

Nginx 的 buffering 机制设计的初衷确实是为了解决收发两端速度不一致问题的,没有 buffering 的情况下,数据会直接从后端服务转发到客户端,如果客户端的接收速度足够快,buffering 完全可以关掉。但是这个初衷在海量连接的情况下,资源的消耗需要同时考虑进来,如果有人故意伪造比较慢的客户端,可以使用很小的代价消耗服务器上很大的资源。

其实这是一个非阻塞编程中的典型问题,接收数据不会阻塞发送数据,发送数据不会阻塞接收数据。如果 Nginx 的两端收发数据速度不对等,缓冲区设置得又过大,就会出问题了。

Nginx 源码分析

读取后端的响应写入本地缓冲区的源码在 src/event/ngx_event_pipe.c 中的 ngx_event_pipe_read_upstream 方法中。这个方法最终会调用 ngx_create_temp_buf 创建内存缓冲区。创建的次数和每次缓冲区的大小由 p->bufs.num(缓冲区个数) 和 p->bufs.size(每个缓冲区的大小)决定,这两个值就是我们在配置文件中指定的 proxy_buffers 的参数值。这部分源码如下所示。

static ngx_int_t
ngx_event_pipe_read_upstream(ngx_event_pipe_t *p)
{
    for ( ;; ) {

        if (p->free_raw_bufs) {
            // ...
        } else if (p->allocated < p->bufs.num) { // p->allocated 目前已分配的缓冲区个数,p->bufs.num 缓冲区个数最大大小
            /* allocate a new buf if it's still allowed */
            b = ngx_create_temp_buf(p->pool, p->bufs.size); // 创建大小为 p->bufs.size 的缓冲区
            if (b == NULL) {
                return NGX_ABORT;
            }
            p->allocated++;
        } 
    }
}

Nginx 源码调试的界面如下所示。

后记

还有过程中一些辅助的判断方法,比如通过 strace、systemtap 工具跟踪内存的分配、释放过程,这里没有展开,这些工具是分析黑盒程序的神器。

除此之外,在这次压测过程中还发现了 worker_connections 参数设置不合理导致 Nginx 启动完就占了 14G 内存等问题,这些问题在没有海量连接的情况下是比较难发现的。

最后,底层原理是必备技能,调参是门艺术。上面说的内容可能都是错的,看看排查思路就好。

课程资料,关注私信【555】获取,还可领取更多Java面试题资料

相关推荐

在NAS实现直链访问_如何访问nas存储数据

平常在使用IPTV或者TVBOX时,经常自己会自定义一些源。如何直链的方式引用这些自定义的源呢?本人基于armbian和CasaOS来创作。使用标准的Web服务器(如Nginx或Apache...

PHP开发者必备的Linux权限核心指南

本文旨在帮助PHP开发者彻底理解并解决在Linux服务器上部署应用时遇到的权限问题(如Permissiondenied)。核心在于理解“哪个用户(进程)在访问哪个文件(目录)”。一、核心...

【Linux高手必修课】吃透sed命令!文本手术刀让你秒变运维大神!

为什么说sed是Linux运维的"核武器"?想象你有10万个配置文件需要批量修改?传统方式要写10万行脚本?sed一个命令就能搞定!这正是运维工程师的"暴力美学"时...

「实战」docker-compose 编排 多个docker 组成一个集群并做负载

本文目标docker-compose,对springboot应用进行一个集群(2个docker,多个类似,只要在docker-compose.yml再加boot应用的服务即可)发布的过程架构...

企业安全访问网关:ZeroNews反向代理

“我们需要让外包团队访问测试环境,但不想让他们看到我们的财务系统。”“审计要求我们必须记录所有第三方对内部系统的访问,现在的VPN日志一团糟。”“每次有新员工入职或合作伙伴接入,IT部门都要花半天时间...

反向代理以及其使用场景_反向代理实现过程

一、反向代理概念反向代理(ReverseProxy)是一种服务器配置,它将客户端的请求转发给内部的另一台或多台服务器处理,然后将响应返回给客户端。与正向代理(ForwardProxy)不同,正向代...

Nginx反向代理有多牛?一篇文章带你彻底搞懂!

你以为Nginx只是个简单的Web服务器?那可就大错特错了!这个看似普通的开源软件,实际上隐藏着惊人的能力。今天我们就来揭开它最强大的功能之一——反向代理的神秘面纱。反向代理到底是什么鬼?想象一下你...

Nginx反向代理最全详解(原理+应用+案例)

Nginx反向代理在大型网站有非常广泛的使用,下面我就重点来详解Nginx反向代理@mikechen文章来源:mikechen.cc正向代理要理解清楚反向代理,首先:你需要搞懂什么是正向代理。正向代理...

centos 生产环境安装 nginx,包含各种模块http3

企业级生产环境Nginx全模块构建的大部分功能,包括HTTP/2、HTTP/3、流媒体、SSL、缓存清理、负载均衡、DAV扩展、替换过滤、静态压缩等。下面我给出一个完整的生产环境安装流程(C...

Nginx的负载均衡方式有哪些?_nginx负载均衡机制

1.轮询(默认)2.加权轮询3.ip_hash4.least_conn5.fair(最小响应时间)--第三方6.url_hash--第三方...

Nginx百万并发优化:如何提升100倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。Nginx是大型架构的核心,下面我重点详解Nginx百万并发优化@mikechen文章来源:mikechen....

在 Red Hat Linux 上搭建高可用 Nginx + Keepalived 负载均衡集群

一、前言在现代生产环境中,负载均衡是确保系统高可用性和可扩展性的核心技术。Nginx作为轻量级高性能Web服务器,与Keepalived结合,可轻松实现高可用负载均衡集群(HA+LB...

云原生(十五) | Kubernetes 篇之深入了解 Pod

深入了解Pod一、什么是PodPod是一组(一个或多个)容器(docker容器)的集合(就像在豌豆荚中);这些容器共享存储、网络、以及怎样运行这些容器的声明。我们一般不直接创建Pod,而是...

云原生(十七) | Kubernetes 篇之深入了解 Deployment

深入了解Deployment一、什么是Deployment一个Deployment为Pods和ReplicaSets提供声明式的更新能力。你负责描述Deployment中的目标状...

深入理解令牌桶算法:实现分布式系统高效限流的秘籍

在高并发系统中,“限流”是保障服务稳定的核心手段——当请求量超过系统承载能力时,合理的限流策略能避免服务过载崩溃。令牌桶算法(TokenBucket)作为最经典的限流算法之一,既能控制请求的平...

取消回复欢迎 发表评论: