c++TCP/IP网络编程之多进程服务端(一)
off999 2025-01-07 14:55 18 浏览 0 评论
进程概念及应用
我们知道,监听套接字会有一个等待队列,里面存放着不同客户端的连接请求,如果有一百个客户端,每个客户端的请求处理是0.5s,第一个客户端当然不会不满,但第一百个客户端就会有相当大的意见了。为了要使得所有客户端都尽可能的满意,我们应采用并发服务端,使其同时向所有发起请求的客户端提供服务。而且,网络程序中数据通信时间比CPU运算时间占比更大,因此,向多个客户端提供服务是一种有效利用CPU的方式。接下来讨论同时向多个客户端提供服务的并发服务端,下面提出具有代表性的并发服务端实现模型和方法:
- 多进程服务器:通过创建多个进程提供服务
- 多路复用服务器:通过捆绑并统一管理I/O对象提供服务
- 多线程服务器:通过生成与客户端等量的线程提供服务
先来简单理解下进程:我们打开电脑一般不会只做一件事,比方单纯的浏览网站,单纯的聊天。一般我们都是几件事轮流切换着做,我们会在浏览网页时打开音乐播放器播放音乐,还会时不时回复下QQ消息。那么这里就牵扯到三个进程了,一个是浏览器进程,一个是播放器进程,还有一个是QQ进程。从操作系统的角度看,进程是程序流的基本单位,若创建多个进程,则操作系统将同时运行。有时一个程序运行过程中也会产生多个进程,像谷歌浏览器,打开一个tab页,实际上就是产生一个新的进程。接下来要创建的多进程服务器就是其中的代表,编写服务端前,先了解一下通过程序创建进程的方法
CPU核的个数和进程数:拥有两个运算器的CPU称为双核CPU,拥有四个运算器的CPU称作四核CPU。也就是说,一个CPU可能包含多个运算器(核)。核的个数与可同时运行的进程数相同,相反,若进程数超过核数,进程将分时使用CPU资源。但因CPU运算速度极快,我们会感到所有进程同时运行,当然,核数越多,这种感觉越明显
进程ID
讲解创建进程方法前,先简要说明下进程ID。无论进程是如何创建的,所有进程都会从操作系统分配得到ID。此ID称为“进程ID”,其值为大于2的整数,1要分配给操作系统启动后的(用于协助操作系统)首个进程,因此用于进程无法得到ID为1的进程ID,接下来观察Linux中正在运行的进程:
# ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 384 0.0 0.0 1520 208 pts/23 Ss+ Sep04 0:00 /bin/sh -c nginx -g "daemon on;" && uwsgi --ini /data/web/uwsgi.ini
root 438 0.0 0.6 257212 36936 pts/23 Sl+ Sep04 0:03 uwsgi --ini /data/web/uwsgi.ini
root 473 0.0 0.0 1520 208 pts/3 Ss+ Sep21 0:00 /bin/sh -c nginx -g "daemon on;" && uwsgi --ini /data/web/uwsgi.ini
root 513 0.0 0.7 186080 44028 pts/3 S+ Sep21 0:05 uwsgi --ini /data/web/uwsgi.ini
root 555 0.0 0.6 186724 40404 pts/3 Sl+ Sep21 0:00 uwsgi --ini /data/web/uwsgi.ini
root 702 0.0 0.0 110044 696 tty1 Ss+ Aug19 0:00 /sbin/agetty --noclear tty1 linux
root 703 0.0 0.0 110044 732 hvc0 Ss+ Aug19 0:00 /sbin/agetty --keep-baud 115200 38400 9600 hvc0 vt220
root 3025 0.0 0.0 1520 16 pts/1 Ss+ Aug19 0:00 /bin/sh -c nginx -g "daemon on;" && uwsgi --ini /data/web/uwsgi.ini
root 3694 0.0 0.1 242444 10644 pts/1 Sl+ Aug19 0:01 uwsgi --ini /data/web/uwsgi.ini
root 3992 0.0 0.0 102696 1468 pts/7 Ss+ Aug19 10:49 /usr/local/bin/python /usr/local/bin/gunicorn -w 3 -k gevent -b :5001 manage:app
root 4089 0.0 0.0 11636 8 pts/8 Ss+ Aug19 0:00 /bin/sh -c uwsgi --ini /data/code/uwsgi.ini && nginx -g "daemon off;"
可以看出,通过ps命令可以查看当前运行的所有进程,该命令同时列出了PID(进程ID),ps命令可通过指定a和u参数u列出所有进程的详细信息
通过fork函数创建进程
#include
pid_t fork(void);//成功时返回进程ID,失败时返回-1
fork函数将创建调用的进程副本,也就是说,并非根据完全不同的程序创建进程,而是复制正在运行的、调用fork函数的进程。另外,两个进程都将执行fork函数调用后的语句(准确地说是在fork函数返回后)。但因为通过同一个进程、复制相同的内存空间,之后的程序流根据fork函数的返回值加以区分。即利用fork函数的如下特点区分程序执行流程:
- 父进程:fork函数返回子进程ID
- 子进程:fork函数返回0
此处,“父进程”指原进程,即调用fork函数的主体,而“子进程”是通过父进程调用fork函数复制出的进程。图1-1展示了调用fork函数后的程序运行流程
图1-1 fork函数的调用
图1-1中可以看到,父进程调用fork函数的同时复制出子进程,并分别得到fork函数的返回值。但复制前,父进程全局变量gval增加到11,将局部变量lval的值增加到25。复制完成后根据fork函数的返回类型区分父子进程,父进程将lval加1,但这不会影响子进程的lval的值。同样,子进程将gval的值加1也不会影响父进程的gval。因为fork函数调用后分成了两个完全不同的进程,只是二者共享同一代码块而已。接下来,我们验证之前所说的内容
fork.c
#include
#include
int gval = 10;
int main(int argc, char *argv[])
{
pid_t pid;
int lval = 20;
gval++, lval += 5;
pid = fork();
if (pid == 0) // if Child Process
gval += 2, lval += 2;
else // if Parent Process
gval -= 2, lval -= 2;
if (pid == 0)
printf("Child Proc: [%d, %d] \n", gval, lval);
else
printf("Parent Proc: [%d, %d] \n", gval, lval);
return 0;
}
- 第11行:创建子进程,父进程的pid中存有子进程的ID,子进程的pid是0
- 第12、18行:子进程执行这两行代码,因为pid为0
- 第15、20行:父进程执行这两行代码,因为此时pid中存有子进程ID
编译fork.c并运行
# gcc fork.c -o fork
# ./fork
Parent Proc: [9, 23]
Child Proc: [13, 27]
从运行结果可以看出,调用fork函数后,父子进程拥有完全独立的内存结构
进程和僵尸进程
文件操作中,关闭文件和打开文件同等重要。同样,进程销毁也和进程创建同等重要。如果未认真对待进程销毁,它们将变成僵尸进程困扰各位。
僵尸进程
进程完成工作后(执行完main函数中的程序后)应被销毁,但有时这些进程变成僵尸进程,占用系统中的重要资源。这种状态下的进程称作“僵尸进程”,这也是给系统带来负担的原因之一。因此,我们应该消灭这种进程
产生僵尸进程的原因
为了防止僵尸进程的产生,先解释产生僵尸进程的原因。利用如下两个示例展示调用fork函数产生子进程的终止方式:
- 传递参数并调用exit函数
- main函数中执行return并返回值
向exit函数传递的参数值和main函数的return语句返回的值都会传递给操作系统,而操作系统不会销毁子进程,直到把这些值传递给产生该子进程的父进程,处在这种状态下的进程就是僵尸进程。也就是说,将子进程变成僵尸进程的正是操作系统。既然如此,僵尸进程何时被销毁呢?其实之前已给出答案:当子进程将返回值传递给父进程的时候。那么,如何向父进程传递返回值呢?操作系统不会主动把这些值传递给父进程,只有父进程主动发起请求(函数调用)时,操作系统才会传递该值。换言之,如果父进程未主动要求获得子进程的结束状态值,操作系统将一直保存,并让子进程长时间处于僵尸进程状态。接下来的示例将创建僵尸进程
zombie.c
#include
#include
int main(int argc, char *argv[])
{
pid_t pid = fork();
if (pid == 0) // if Child Process
{
puts("Hi I'am a child process");
}
else
{
printf("Child Process ID: %d \n", pid);
sleep(30); // Sleep 30 sec.
}
if (pid == 0)
puts("End child process");
else
puts("End parent process");
return 0;
}
- 第14行:输出子进程ID,可以通过该值查看子进程状态(是否为僵尸进程)
- 第15行:父进程暂停30秒,如果父进程终止,处于僵尸进程状态的子进程将同时销毁。因此,延缓父进程的执行以验证僵尸进程
编译zombie.c并运行
# ./zombie
Child Process ID: 5507
Hi I'am a child process
End child process
End parent process
程序开始运行,在打印出子进程的进程ID后,会停歇30秒,这个时候我们可以趁机看一下5507进程号所对应的进程状态
# ps -ef | grep 5507
root 5507 5506 0 11:44 pts/32 00:00:00 [zombie]
root 5509 23062 0 11:45 pts/31 00:00:00 grep --color=auto 5507
可以看到,5507对应的进程号的状态为defunct,即为僵尸进程。经过30秒后,随着父进程的终止,子进程也将销毁
销毁僵尸进程1:利用wait函数
如前所述,为了销毁子进程,父进程应主动请求获取子进程的返回值,接下来讨论下发起请求的具体方法,共有两种,其中之一就是调用wait函数
#include
pid_t wait(int *statloc);//成功时返回终止的子进程ID,失败时返回-1
调用次函数时如果已有子进程终止,那么子进程终止时传递的返回值(exit函数的参数值、main函数的return返回值)将保存到该函数的参数所指的内存空间。但函数参数指向的单元中还包含其他信息,因此需要通过下列宏进行分离
- WIFEXITED子进程正常终止时返回真(true)
- WEXITSTATUS返回子进程的返回值
也就是说,向wait函数传递变量status的地址时,调用wait函数后应编写如下代码
if (WIFEXITED(status))
{
puts("Normal termination!");
printf("Child pass num: %d \n", WEXITSTATUS(status)); //返回值是多少
}
根据上述内容编写示例,此示例中不会再让子进程编程僵尸进程
wait.c
#include
#include
#include
#include
int main(int argc, char *argv[])
{
int status;
pid_t pid = fork();
if (pid == 0)
{
return 3;
}
else
{
printf("Child PID: %d \n", pid);
pid = fork();
if (pid == 0)
{
exit(7);
}
else
{
printf("Child PID: %d \n", pid);
wait(&status);
if (WIFEXITED(status))
printf("Child send one: %d \n", WEXITSTATUS(status));
wait(&status);
if (WIFEXITED(status))
printf("Child send two: %d \n", WEXITSTATUS(status));
sleep(30); // Sleep 30 sec.
}
}
return 0;
}
- 第9、13行:第9行创建的子进程将在第13行通过main函数中的return语句终止
- 第18、21行:第18行中创建的子进程将在第21行通过调用exit函数终止
- 第26行:调用wait函数,之前终止的子进程相关信息将保存到status变量,同时相关子进程被完全销毁
- 第27、28行:第27行中通过WIFEXITED宏验证子进程是否正常终止,如果正常退出,则调用WEXITSTATUS宏输出子进程的返回值
- 第30~32行:因为之前创建了两个进程,所以再次调用wait函数和宏
- 第33行:为暂停父进程终止而插入的代码,此时可以查看子进程状态
# gcc wait.c -o wait
# ./wait
Child PID: 6862
Child PID: 6863
Child send one: 3
Child send two: 7
在系统中执行ps命令可以发现,并没有上一个示例中对应PID的进程。这是因为调用了wait函数,完全销毁了子进程,另外两个子进程终止时返回3和7传递给父进程。这就是通过调用wait函数消灭僵尸进程的方法,调用wait函数时,如果没有已终止的子进程,那么程序将阻塞直到有子进程终止,因此需谨慎调用该函数
销毁僵尸进程2:使用waitpid函数
wait函数会引起程序的阻塞,还可以考虑调用waitpid函数,这是防止僵尸进程的第二种方法,也是防止阻塞的方法
#include
pid_t waitpid(pid_t pid, int *statloc, int options);//成功时返回终止的子进程ID(或0),失败时返回-1
- pid:等待终止的目标子进程的ID,若传递-1,则与wait函数相同,可以等待任意子进程终止
- statloc:与wait函数的statloc具有相同意义
- options:传递头文件sys/wait.h中声明的常量WNOHANG,即使没有终止的子进程也不会进入阻塞状态,而是返回0并退出函数
下面介绍用上述函数的示例,调用waitpid函数,程序不会阻塞
waitpid.c
#include
#include
#include
int main(int argc, char *argv[])
{
int status;
pid_t pid = fork();
if (pid == 0)
{
sleep(15);
return 24;
}
else
{
while (!waitpid(-1, &status, WNOHANG))
{
sleep(3);
puts("sleep 3sec.");
}
if (WIFEXITED(status))
printf("Child send %d \n", WEXITSTATUS(status));
}
return 0;
}
- 第12行:调用sleep函数推迟子进程的执行,这会导致程序延迟15秒
- 第17行:while循环调用waitpid函数,向第三个参数传递WNOHANG,因此,若之前没有终止的子进程将返回0
编译waitpid.c并运行
# gcc waitpid.c -o waitpid
# ./waitpid
sleep 3sec.
sleep 3sec.
sleep 3sec.
sleep 3sec.
sleep 3sec.
Child send 24
可以看出第20行共执行了五次,另外,也证明waitpid函数并未阻塞
更多C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程等等免费分享加群.
相关推荐
- 让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
-
花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...
- 7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制
-
“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...
- Python3.14:终于摆脱了GIL的限制
-
前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...
- Python Web开发实战:3小时从零搭建个人博客
-
一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...
- 图解Python编程:从入门到精通系列教程(附全套速查表)
-
引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...
- Python 并发编程实战:从基础到实战应用
-
并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...
- 吴恩达亲自授课,适合初学者的Python编程课程上线
-
吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...
- Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件
-
在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...
- Python turtle模块编程实践教程
-
一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...
- Python 中的asyncio 编程入门示例-1
-
Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...
- 30天学会Python,开启编程新世界
-
在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...
- Python基础知识(IO编程)
-
1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...
- Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!
-
Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...
- 一文带你了解Python Socket 编程
-
大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...
- Python-面向对象编程入门
-
面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)