百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Ascend+FastAPI+ Uvicorn 实现推理

off999 2025-02-07 18:44 79 浏览 0 评论

1、FastAPI & Uvicorn

FastAPI

FastAPI 是一个用于构建 API 的现代、快速(高性能)的 Python Web 框架,专为在 Python 中构建 RESTful API 而设计,具有以下特点:

高性能

  • 性能卓越:FastAPI 的性能可与 NodeJS 和 Go 等语言的高性能 Web 框架相媲美,是最快的 Python Web 框架之一。这得益于其底层的 Starlette 框架和异步编程模型,能够充分利用 Python 异步生态系统,提供卓越的性能和吞吐量。
  • 异步支持:FastAPI 支持基于 Python 3.7 及以上版本的异步编程,使得处理 IO 密集型任务更加高效,非常适合高并发的场景。
from fastapi import FastAPI
app = FastAPI()

@app.get("/")
async def read_root():
    return {"Hello": "World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int, q: str = None):
    return {"item_id": item_id, "q": q}

在这个例子中,我们定义了两个路由:一个根路由 / 和一个带参数的路由 /items/{item_id}。通过装饰器 @app.get(),我们指定了 HTTP 方法和路由路径。函数参数将自动从查询参数、路径参数、请求头等中提取,并进行数据验证。

Uvicorn

Uvicorn 是一个基于 ASGI(Asynchronous Server Gateway Interface)的轻量级异步服务器,用于运行 Python Web 应用程序,特别是那些基于 ASGI 的现代异步框架,如 FastAPI、Starlette 等。以下是关于 Uvicorn 的详细介绍:

基本功能

  • 异步支持:Uvicorn 是一个异步服务器,能够充分利用 Python 的异步编程特性。它使用 Python 的 asyncio 库来处理并发请求,使得应用程序能够更高效地处理大量并发连接,特别适合处理 IO 密集型任务,如网络请求、数据库操作等。
  • 高性能:Uvicorn 的性能非常出色,它能够快速地处理请求和响应,提供高吞吐量和低延迟的服务。在许多基准测试中,Uvicorn 的性能表现与一些传统的同步服务器(如 Gunicorn)相比具有显著优势,尤其是在处理大量并发请求时。

FastAPI + Uvicorn 的结合

  • 无缝集成:Uvicorn 与 FastAPI 结合使用非常方便。FastAPI 生成的 ASGI 应用可以直接由 Uvicorn 运行,无需额外的适配。这种组合充分利用了 FastAPI 的开发友好性和 Uvicorn 的高性能,使得开发和部署异步 Web 应用变得非常简单。
  • 生产环境:在生产环境中,Uvicorn 可以与 Nginx 等反向代理服务器配合使用,提供更稳定、更安全的服务。Nginx 可以处理静态文件、负载均衡、SSL/TLS 加密等任务,而 Uvicorn 专注于处理动态请求。

假设有一个简单的 FastAPI 应用 app.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def read_root():
    return {"Hello": "World"}

可以通过以下命令使用 Uvicorn 启动该应用:

bash复制uvicorn app:app --host 0.0.0.0 --port 8000

访问 http://localhost:8000 即可看到返回的 JSON 响应。

2、Ascend上跑推理

方案设计

具体的模型通过transformers 库的from_pretrained接口从xxx-config配置文章引入。

model = AutoModel.from_pretrained("xxx-config", torch_dtype="auto").to("npu:0"),

引入。然后就是,以FastAPI + Uvicorn启动一个web服务,通过generate_chat_output运行推理,获取推理结果。

整体方案代码参考如下

import torch
import torch_npu
import uvicorn
from typing import List
from fastapi import FastAPI
from contextlib import asynccontextmanager
from transformers import AutoTokenizer, AutoModel
from fastapi.middleware.cors import CORSMiddleware

# 设置卡
torch.npu.set_device("npu:0")

# 配置tokenizer 
tokenizer = AutoTokenizer.from_pretrained("xxx-config")

# 获取模型
model = AutoModel.from_pretrained("xxx-config", torch_dtype="auto").to("npu:0")

@asynccontextmanager
async def lifespan(app: FastAPI):
    yield
    if torch_npu.npu.is_available():
        torch_npu.npu.empty_cache()

# 实例化api服务器
app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
)

# 推理实现
@app.post("/llm/chat")
async def generate_chat_output(item: Item):
    try:
        texts = [t.replace("\n", " ") for t in item.sentences]
        encoded_inputs = tokenizer(texts, truncation=True, return_tensors="pt", padding=True, max_length=512).to("npu:0")
        with torch.no_grad():
            model_output = model(**encoded_inputs)
    except Exception as e:
        traceback.print_exc()

    return sequence_embeddings.tolist()

# uvicorn提供服务化
if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=8080)

构建测试

测试文件test.py如下:

import httpx
data = {
    "sentences": ["中国GDP为129.43万亿元,GDP增速为5.25%,人均GDP为8.94万元/人,人均GDP增速为5.40%,其中第一产业占6.90%,第二产业占36.80%,第三产业占56.30%"]
}
def request_url():
    with httpx.Client() as client:
        res = client.post("http://127.0.0.1:1025/llm/chat", json=data)
        print(res.json())

运行

python test.py

客户端和服务器均正常。

添加图片注释,不超过 140 字(可选)

上述他图片结果,仅攻参考。

相关推荐

Kubernetes 核心概念全景图:Pod、Node、Cluster、Control Plane 等

想真正读懂Kubernetes的底层运作,你必须理解它的“权力架构”。Pod是什么?Node是什么?ControlPlane又是做什么的?它们之间有什么关系?怎么协同工作?本篇带你构建一个...

Helm 实战:用 Helm 部署一个 Nginx 应用

这一篇,我们将动手实战:用Helm从零部署一个Nginx应用,并掌握HelmChart的结构和参数化技巧。一、准备环境在开始之前,你需要确保环境中具备以下工具:已部署的Kubernet...

从零开始:如何在 Linux 上搭建 Nginx + Node.js 高性能 Web 服务

在现代互联网服务架构中,Nginx+Node.js已成为轻量级、高性能网站的首选组合。本文将带你从零开始,一步步搭建一个高并发、高可用的Web服务平台,让新手也能轻松掌握生产级部署思路。一、...

NetBox 最新版 4.4.1 完整安装指南

NetBox最新版4.4.1完整安装指南(修正版)by大牛蛙1.系统准备#关闭SELinux和防火墙(仅测试环境)systemctldisable--nowfirewalldse...

Termux 安装 linux 宝塔面板,搭建 Nginx+PHP+Mysql web 网站环境

Termux安装linux宝塔面板,搭建Nginx+PHP+Mysqlweb服务环境,解决启动故障奶妈级教程1.到宝塔面板官网:https://www.bt.cn/new/download...

OpenEuler系统安装Nginx安装配置_openwrt安装nginx

NginxWEB安装时可以指定很多的模块,默认需要安装Rewrite模块,也即是需要系统有PCRE库,安装Pcre支持Rewrite功能。如下为安装NginxWEB服务器方法:源码的路径,而不是编...

多级缓存架构实战:从OpenResty到Redis,打造毫秒级响应系统

在传统的Web架构中,当用户发起请求时,应用通常会直接查询数据库。这种模式在低并发场景下尚可工作,但当流量激增时,数据库很容易成为性能瓶颈。多级缓存通过在数据路径的不同层级设置缓存,可以显著降低数据库...

如何使用 Nginx 缓存提高网站性能 ?

快速加载的站点提供了更好的用户体验并且可以拥有更高的搜索引擎排名。通过Nginx缓存提高你的网站性能是一个有效的方法。Nginx是一个流行的开源web服务器,也可以作为web服务器反向代...

如何构建企业级Docker Registry Server

很多人问我,虚拟机镜像和docker镜像的区别是什么?其实区别非常明显,我们可以通过阅读Dockerfile文件就可以知道这个镜像都做了哪些操作,能提供什么服务;但通过虚拟机镜像,你能一眼看出来虚拟机...

如何解决局域网SSL证书问题?使用mkcert证书生成工具轻松搞定

“局域网里弹出‘不安全’红锁,老板就在身后盯着演示,那一刻只想原地消失。”别笑,九成前端都经历过。自签证书被Chrome标红,客户以为网站被黑,其实只是缺一张被信任的证。mkcert把这事从半小时缩到...

Docker 安全与权限控制:别让你的容器变成“漏洞盒子”

在享受容器带来的轻量与灵活的同时,我们也必须面对一个现实问题:安全隐患。容器并不是天然安全,错误配置甚至可能让攻击者“越狱”入侵主机!本篇将带你从多个层面强化Docker的安全防护,构建真正可放心...

Kubernetes生产级管理指南(2025版)

在云原生技术持续演进的2025年,Kubernetes已成为企业数字化转型的核心引擎。然而,生产环境中的集群管理仍面临基础设施配置、安全漏洞、运维复杂度攀升等挑战。本文将结合最新行业实践,从基础设施即...

云原生工程师日常使用最多的工具和100条高频命令

在云原生时代,工程师不仅要熟悉容器化、编排和服务网格,还要掌握大量工具和命令来进行日常运维与开发。本文将从工具篇和命令篇两个角度,详细介绍云原生工程师每天都会用到的核心技能。一、云原生工程师常...

用 Jenkins 实现自动化 CI/CD_jenkins api自动执行

场景设定(可替换为你的技术栈)语言:Node.js(示例简单,任何语言思路一致)制品:Docker镜像(推送到DockerHub/Harbor)运行环境:Kubernetes(staging...

5款好用开源云笔记虚拟主机部署项目推荐

在个人数据管理与协同办公场景中,开源云笔记项目凭借可自主部署、数据可控的优势,成为众多用户的首选。以下推荐5款适配虚拟主机部署、功能完善的开源项目,附核心特性与部署要点,助力快速搭建专属云笔记系统。...

取消回复欢迎 发表评论: