百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Ascend+FastAPI+ Uvicorn 实现推理

off999 2025-02-07 18:44 61 浏览 0 评论

1、FastAPI & Uvicorn

FastAPI

FastAPI 是一个用于构建 API 的现代、快速(高性能)的 Python Web 框架,专为在 Python 中构建 RESTful API 而设计,具有以下特点:

高性能

  • 性能卓越:FastAPI 的性能可与 NodeJS 和 Go 等语言的高性能 Web 框架相媲美,是最快的 Python Web 框架之一。这得益于其底层的 Starlette 框架和异步编程模型,能够充分利用 Python 异步生态系统,提供卓越的性能和吞吐量。
  • 异步支持:FastAPI 支持基于 Python 3.7 及以上版本的异步编程,使得处理 IO 密集型任务更加高效,非常适合高并发的场景。
from fastapi import FastAPI
app = FastAPI()

@app.get("/")
async def read_root():
    return {"Hello": "World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int, q: str = None):
    return {"item_id": item_id, "q": q}

在这个例子中,我们定义了两个路由:一个根路由 / 和一个带参数的路由 /items/{item_id}。通过装饰器 @app.get(),我们指定了 HTTP 方法和路由路径。函数参数将自动从查询参数、路径参数、请求头等中提取,并进行数据验证。

Uvicorn

Uvicorn 是一个基于 ASGI(Asynchronous Server Gateway Interface)的轻量级异步服务器,用于运行 Python Web 应用程序,特别是那些基于 ASGI 的现代异步框架,如 FastAPI、Starlette 等。以下是关于 Uvicorn 的详细介绍:

基本功能

  • 异步支持:Uvicorn 是一个异步服务器,能够充分利用 Python 的异步编程特性。它使用 Python 的 asyncio 库来处理并发请求,使得应用程序能够更高效地处理大量并发连接,特别适合处理 IO 密集型任务,如网络请求、数据库操作等。
  • 高性能:Uvicorn 的性能非常出色,它能够快速地处理请求和响应,提供高吞吐量和低延迟的服务。在许多基准测试中,Uvicorn 的性能表现与一些传统的同步服务器(如 Gunicorn)相比具有显著优势,尤其是在处理大量并发请求时。

FastAPI + Uvicorn 的结合

  • 无缝集成:Uvicorn 与 FastAPI 结合使用非常方便。FastAPI 生成的 ASGI 应用可以直接由 Uvicorn 运行,无需额外的适配。这种组合充分利用了 FastAPI 的开发友好性和 Uvicorn 的高性能,使得开发和部署异步 Web 应用变得非常简单。
  • 生产环境:在生产环境中,Uvicorn 可以与 Nginx 等反向代理服务器配合使用,提供更稳定、更安全的服务。Nginx 可以处理静态文件、负载均衡、SSL/TLS 加密等任务,而 Uvicorn 专注于处理动态请求。

假设有一个简单的 FastAPI 应用 app.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def read_root():
    return {"Hello": "World"}

可以通过以下命令使用 Uvicorn 启动该应用:

bash复制uvicorn app:app --host 0.0.0.0 --port 8000

访问 http://localhost:8000 即可看到返回的 JSON 响应。

2、Ascend上跑推理

方案设计

具体的模型通过transformers 库的from_pretrained接口从xxx-config配置文章引入。

model = AutoModel.from_pretrained("xxx-config", torch_dtype="auto").to("npu:0"),

引入。然后就是,以FastAPI + Uvicorn启动一个web服务,通过generate_chat_output运行推理,获取推理结果。

整体方案代码参考如下

import torch
import torch_npu
import uvicorn
from typing import List
from fastapi import FastAPI
from contextlib import asynccontextmanager
from transformers import AutoTokenizer, AutoModel
from fastapi.middleware.cors import CORSMiddleware

# 设置卡
torch.npu.set_device("npu:0")

# 配置tokenizer 
tokenizer = AutoTokenizer.from_pretrained("xxx-config")

# 获取模型
model = AutoModel.from_pretrained("xxx-config", torch_dtype="auto").to("npu:0")

@asynccontextmanager
async def lifespan(app: FastAPI):
    yield
    if torch_npu.npu.is_available():
        torch_npu.npu.empty_cache()

# 实例化api服务器
app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
)

# 推理实现
@app.post("/llm/chat")
async def generate_chat_output(item: Item):
    try:
        texts = [t.replace("\n", " ") for t in item.sentences]
        encoded_inputs = tokenizer(texts, truncation=True, return_tensors="pt", padding=True, max_length=512).to("npu:0")
        with torch.no_grad():
            model_output = model(**encoded_inputs)
    except Exception as e:
        traceback.print_exc()

    return sequence_embeddings.tolist()

# uvicorn提供服务化
if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=8080)

构建测试

测试文件test.py如下:

import httpx
data = {
    "sentences": ["中国GDP为129.43万亿元,GDP增速为5.25%,人均GDP为8.94万元/人,人均GDP增速为5.40%,其中第一产业占6.90%,第二产业占36.80%,第三产业占56.30%"]
}
def request_url():
    with httpx.Client() as client:
        res = client.post("http://127.0.0.1:1025/llm/chat", json=data)
        print(res.json())

运行

python test.py

客户端和服务器均正常。

添加图片注释,不超过 140 字(可选)

上述他图片结果,仅攻参考。

相关推荐

让 Python 代码飙升330倍:从入门到精通的四种性能优化实践

花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...

7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制

“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...

Python3.14:终于摆脱了GIL的限制

前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...

Python Web开发实战:3小时从零搭建个人博客

一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...

图解Python编程:从入门到精通系列教程(附全套速查表)

引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...

Python 并发编程实战:从基础到实战应用

并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...

吴恩达亲自授课,适合初学者的Python编程课程上线

吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...

Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件

在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...

Python turtle模块编程实践教程

一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...

Python 中的asyncio 编程入门示例-1

Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...

30天学会Python,开启编程新世界

在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...

Python基础知识(IO编程)

1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...

Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!

Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...

一文带你了解Python Socket 编程

大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...

Python-面向对象编程入门

面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...

取消回复欢迎 发表评论: