百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Loki最佳实践(译)

off999 2025-02-28 17:01 28 浏览 0 评论

本文参考《Loki labe best practice》,并结合小白实际的工作经验总结而来,不对的地方还请海涵。

1. 尽量使用静态标签

使用静态标签可以在日志时的开销更小。通常日志在发送到Loki之前,在注入label时,常见的推荐静态标签包含:

  • 物理机:kubernetes/hosts
  • 应用名:kubernetes/labels/app_kubernetes_io/name
  • 组件名:kubernetes/labels/name
  • 命名空间:kubernetes/namespace
  • 其他kubernetes/label/* 的静态标签,如环境、版本等信息

2. 谨慎使用动态标签

过多的标签组合会造成大量的流,它会让Loki存储大量的索引和小块的对象文件。这些都会显著消耗Loki的查询性能。为避免这些问题,在你知道需要之前不要添加标签!loki的优势在于并行查询,使用过滤器表达式( lable = "text", |~ "regex", …)来查询日志会更有效,并且速度也很快。

那么,我该什么时候添加标签?

chunk_target_size默认为1MB,loki将以1MB的压缩后大小来切割日志块,大约等于5MB的原始日志文件(根据你配置的压缩级别来决定)。如果在max_chunk_age时间内,你的日志流足以生成一个或者多个压缩块,那么你可以考虑添加标签,将日志流拆得更细一点。从Loki 1.4.0开始,有一个指标可以帮助我们了解日志块刷新的情况

sum by (reason) (rate(loki_ingester_chunks_flushed_total{cluster="dev"}[1m]))

3. 有界的标签值范围

不管怎样,到最后如果你不得不采用动态标签的话,那你也要注意控制标签的范围和value值的长度。举个例子,如果你想将nginx的访问日志提取一些字段后存储到loki,

{"@timestamp":"2020-09-30T12:16:07+08:00","@source":"172.16.1.1","hostname":"node1","ip":"-","client":"172.16.2.1","request_method":"GET","scheme":"https","domain":"xxx.com","referer":"-","request":"/api/v1/asset/asset?page_size=-1&group=23","args":"page_size=-1&group=23","size":975,"status": 200,"responsetime":0.065,"upstreamtime":"0.064","upstreamaddr":"172.16.3.1:8080","http_user_agent":"python-requests/2.22.0","https":"on"}

这里面@source代表客户端源地址,由于源地址是公网地址,那么在建立loki标签时它的值就是个无界的。 再比如这里面@request代表请求URL。可能存在某些请求参数过长,loki的标签值也会过大。如果再将两者相乘,那么这个标签的规模是无法接受的。

以上这种情况是比较属于典型无界的动态标签值,在loki里面我们用Cardinality来表述它,Cardinality值越高,loki的查询效率越低。。Loki社区给出动态标签的范围应尽量控制在10以内

4. 客户端应用的动态标签

Loki的几个客户端(Promtail、Fluentd,Fluent Bit,Docker插件等)都带有配置标签来创建日志流的方法。我们有时需要在loki里面去排查哪些应用使用了动态标签,这时候我们可以用logcli工具来辅助我们。在Loki1.6.0及更高版本中,logcli series命令添加了--analyze-labels参数专门用于调试高cardinality的标签。例如:

$ logcli series --analyze-labels '{app="nginx"}'

Total Streams:  25017
Unique Labels:  8

Label Name  Unique Values  Found In Streams
requestId   24653          24979
logStream   1194           25016
logGroup    140            25016
accountId   13             25016
logger      1              25017
source      1              25016
transport   1              25017
format      1              25017

可以看到这里面requestId这个标签就有24653个值,这是非常不好的。我们应该将requestId从label里面去删除,通过这种方式查询

{app="nginx"} |= "requestId=1234567"

5. 配置缓存

关于loki的缓存,可以参考小白之前的文章《巧用缓存加速Loki查询》

缓存在Loki的应用比较灵活,你可以让loki所有组件公用一个缓存,也可以让每个loki组件单独使用自己的缓存,具体可以参考小白前面关于loki分布式部署的相关文章

6. 日志的时间必须顺序递增

对于一个日志流里面出现时间戳早于该流收到的最新日志,那么这条日志将被删除

{job=”syslog”} 00:00:00 i’m a syslog!
{job=”syslog”} 00:00:02 i’m a syslog!
{job=”syslog”} 00:00:01 i’m a syslog! \\这条日志会被删除

如果你的服务是分布式跑在多个节点上,而且存在时间差的话,那你只有为这类日志添加新的标签来存储了

{job=”syslog”, instance=”host1”} 00:00:00 i’m a syslog!  \\新日志流1
{job=”syslog”, instance=”host1”} 00:00:02 i’m a syslog!
{job=”syslog”, instance=”host2”} 00:00:01 i’m a syslog!  \\新日志流2
{job=”syslog”, instance=”host1”} 00:00:03 i’m a syslog!  \\在日志流1里时间有序
{job=”syslog”, instance=”host2”} 00:00:02 i’m a syslog!  \\在日志流2里时间有序

这个没啥好说的,小白建议日志采集时按照客户端的时间为每条日志添加时间戳。如果你的时间戳是从应用日志里面提取出来,并且出现时间乱序的话,那还是请你先解决应用的问题

7. 使用chunk_target_size参数

上文说到chunk_target_size可以有效的将日志流压缩到一个合理的空间大小,Loki中每个日志流都包含一个块。如果我们将日志文件分解成更多的流,内存中存储的块就越多,在被刷新到磁盘之前,理论上来说都有丢日志的风险。那么这个时候就需要组合max_chunk_age默认1h和chunk_idle_period默认30m,来控制日志刷新的超时时间。

8. 使用-print-config-stderr或-log-config-reverse-order参数

从1.6.0版开始,Loki和Promtail支持这类参数,当启动时,loki会把整个配置信息打印到stderr或日志文件中。,这样我们可以快速看到整个Loki配置,便于调试。

当这个参数-log-config-reverse-order启用时,我们在grafna上查询loki时将以顺序的方式查看日志,这个可以让我们更加方便一点。

9. 使用query-frontend

query-frontend可以有效的将日志查询拆分成多个小查询分发给querier去并发执行。这件极大的提高loki的查询效率,理论上来说你可以扩容上百个querier去并发处理GB或者TB级别的日志,不过前提是你的查询客户端能够容得下这些日志。

关于云原生小白

云原生小白的创号目的是将平日里离大家较远云原生应用以实用的角度展现出来,站在小白的角度来看待和使用云原生,并以每篇文章解决一个实际问题的出发点带领大家走进云原生。

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: