车联网平台百万级消息吞吐架构设计|车联网系列专题 05
off999 2025-03-19 01:04 35 浏览 0 评论
前言
车辆在行驶过程中,会持续不断产生海量的消息,每一条通过车联网上报的数据都是非常珍贵的,其背后蕴藏着巨大的业务价值。因此我们构建的车辆 TSP 平台也通常需要拥有千万级主题和百万级消息吞吐能力。
传统的互联网系统很难支撑百万量级的消息吞吐。在本文中,我们将主要介绍如何针对百万级消息吞吐这一需求进行新一代车联网平台架构设计。
车联网场景消息吞吐设计的关联因素
车联网的消息分为上行和下行。
上行消息一般是传感器及车辆发出的告警等消息,把设备的信息发送给云端的消息平台。下行消息一般有远程控制指令集消息和消息推送,是由云端平台给车辆发送相应的指令。
在车联网消息吞吐设计中,我们需要重点考虑以下因素:
消息频率
车在行驶过程中,GPS、车载传感器等一直不停地在收集消息,为了收到实时的反馈信息,其上报接收的消息也是非常频繁的。上报频率一般在 100ms-30s 不等,所以当车辆数量达到百万量级时,平台就需要支持每秒百万级的消息吞吐。
消息包大小
整个消息包大小一般在 500B 到几十 KB 不等。当大量消息包同时上报时,需要车联网平台拥有更强的接收、发送大消息包的能力。
消息延时
车辆在行驶过程中,消息数据只能通过无线网络来进行传输。在大部分车联网场景下,对车辆的时延要求是 ms 级别。平台在满足百万级吞吐条件下,还需要保持低延时的消息传输。
Topic 数量和层级
在考虑百万级消息吞吐场景时,还需要针对消息 Topic 数量和 Topic 树层级进行规范设计。
Payload 编解码
当消息包比较大的时候,需要重点考虑消息体的封装。单纯的 JSON 封装在消息解析时不够高效,可以考虑采用 Avro、Protobuf 等编码格式进行 Payload 格式化封装。
对于百万级消息吞吐场景,基于 MQTT 客户端共享订阅消息或通过规则引擎实时写入关系型数据库的传统架构显然无法满足。
目前主流的架构选型有两种:一种是消息接入产品/服务+消息队列(Kafka、Pulsar、RabbitMQ、RocketMQ 等),另外一种是消息接入产品/服务+时序数据库(InfluxDB、TDengine、Lindorm 等)来实现。
接下来我们将基于上述的关联因素和客户案例的最佳实践,以云原生分布式物联网消息服务器 EMQX 作为消息接入层,分别介绍这两种架构的实现方式。
EMQX+Kafka 构建百万级吞吐车联网平台
架构设计
Kafka 作为主流消息队列之一,具有持久化数据存储能力,可进行持久化操作,同时可通过将数据持久化到硬盘以及 replication 防止数据丢失。后端 TSP 平台或者大数据平台可以批量订阅想要的消息。
由于 Kafka 拥有订阅发布的能力,既可以从南向接收,把上报消息缓存起来;又可以通过北向的连接,把需要发送的指令通过接口传输给前端,用作指令下发。
我们以 Kafka 为例,构建 EMQX+Kafka 百万级吞吐车联网平台:
- 前端车机的连接与消息可通过公有云商提供的负载均衡产品用作域名转发,如果采用了 TLS/DTLS 的安全认证,可在云上建立四台 HAProxy/Nginx 服务器作为证书卸载和负载均衡使用。
- 采用 10 台 EMQX 组成一个大集群,把一百万的消息吞吐平均分到每个节点十万消息吞吐,同时满足高可用场景需求。
- 如有离线离线/消息缓存需求,可选用 Redis 作为存储数据库。
- Kafka 作为总体消息队列,EMQX 把全量消息通过规则引擎,转发给后端 Kafka 集群中。
- 后端 TSP 平台/OTA 等应用通过订阅 Kafka 的主题接收相应的消息,业务平台的控制指令和推送消息可通过 Kafka/API 的方式下发到 EMQX。
引用或分隔线
在这一方案架构中,EMQX 作为消息中间件具有如下优势,可满足该场景下的需求:
- 支持千万级车辆连接、百万级消息吞吐能力。
- 分布式集群架构,稳定可靠,支持动态水平扩展。
- 强大的规则引擎和数据桥接、持久化能力,支持百万级消息吞吐处理。
- 拥有丰富 API 与认证等系统能顺利对接。
百万吞吐场景验证
为了验证上述架构的吞吐能力,在条件允许的情况下,我们可以通过以下配置搭建百万级消息吞吐测试场景。压测工具可以选用 Benchmark Tools、JMeter 或 XMeter 测试平台。共模拟 100 万设备,每个设备分别都有自己的主题,每个设备每秒发送一次消息,持续压测 12 小时。
压测架构图如下:
性能测试部分结果呈现:
EMQX 规则引擎中可以看到每个节点速度为 10 万/秒的处理速度,10 个节点总共 100 万/秒的速度进行。
在 Kafka 中可以看到每秒 100 万的写入速度,并且一直持续存储。
EMQX+InfluxDB 构建百万级吞吐车联网平台
架构设计
采用 EMQX+ 时序数据库的架构,同样可以构建百万级消息吞吐平台。在本文我们以 InfluxDB 时序数据库为例。
InfluxDB 是一个高性能的时序数据库,被广泛应用于存储系统的监控数据、IoT 行业的实时数据等场景。它从时间维度去记录消息,具备很强写入和存储性能,适用于大数据和数据分析。分析完的数据可以提供给后台应用系统进行数据支撑。
此架构中通过 EMQX 规则引擎进行消息转发,InfluxDB 进行消息存储,对接后端大数据和分析平台,可以更方便地服务于时序分析。
- 前端设备的消息通过云上云厂商的负载均衡产品用作域名转发和负载均衡。
- 本次采用 1 台 EMQX 作为测试,后续需要时可以采用多节点的方式,组成相应的集群方案(测试 100 万可以部署 10 台 EMQX 集群)。
- 如有离线离线/消息缓存需求,可选用 Redis 作为存储数据库。
- EMQX 把全量消息通过规则引擎转发给后端 InfluxDB 进行数据持久化存储。
- 后端大数据平台通过 InfluxDB 接收相应的消息,对其进行大数据分析,分析后再通过 API 的方式把想要的信息传输到 EMQX。
场景验证
如测试架构图中所示,XMeter 压力机模拟 10 万 MQTT 客户端向 EMQX 发起连接,新增连接速率为每秒 10000,客户端心跳间隔(Keep Alive)300 秒。所有连接成功后每个客户端每秒发送一条 QoS 为 1、Payload 为 200B 的消息,所有消息通过 HTTP InfluxDB 规则引擎桥过滤筛选并持久化发至 InfluxDB 数据库。
测试结果呈现如下:
单台 EMQX 服务器实现了单台服务器 10 万 TPS 的消息吞吐持久化到 InfluxDB 能力。参考 EMQX+Kafka 架构的测试场景,将 EMQX 的集群节点扩展到 10 台,就可以支持 100 万的 TPS 消息吞吐能力。
结语
通过本文,我们介绍了车联网场景消息吞吐设计需要考虑的因素,同时提供了两种较为主流的百万级吞吐平台架构设计方案。面对车联网场景下日益增加的数据量,希望本文能够为相关团队和开发者在车联网平台设计与开发过程中提供参考。
相关推荐
- 使用 python-fire 快速构建 CLI_如何搭建python项目架构
-
命令行应用程序是开发人员最好的朋友。想快速完成某事?只需敲击几下键盘,您就已经拥有了想要的东西。Python是许多开发人员在需要快速组合某些东西时选择的第一语言。但是我们拼凑起来的东西在大多数时候并...
- Python 闭包:从底层逻辑到实战避坑,附安全防护指南
-
一、闭包到底是什么?你可以把闭包理解成一个"带记忆的函数"。它诞生时会悄悄记下自己周围的变量,哪怕跑到别的地方执行,这些"记忆"也不会丢失。就像有人出门时总会带上...
- 使用Python实现九九乘法表的打印_用python打印一个九九乘法表
-
任务要求九九乘法表的结构如下:1×1=11×2=22×2=41×3=32×3=63×3=9...1×9=92×9=18...9×9=81使用Python编写程序,按照上述格式打印出完整的九...
- 吊打面试官(四)--Java语法基础运算符一文全掌握
-
简介本文介绍了Java运算符相关知识,包含运算规则,运算符使用经验,特殊运算符注意事项等,全文5400字。熟悉了这些内容,在运算符这块就可以吊打面试官了。Java运算符的规则与特性1.贪心规则(Ma...
- Python三目运算基础与进阶_python三目运算符判断三个变量
-
#头条创作挑战赛#Python中你学会了三步运算,你将会省去很多无用的代码,我接下来由基础到进阶的方式讲解Python三目运算基础在Python中,三目运算符也称为条件表达式。它可以通过一行代码实现条...
- Python 中 必须掌握的 20 个核心函数——set()详解
-
set()是Python中用于创建集合的核心函数,集合是一种无序、不重复元素的容器,非常适合用于成员检测、去重和数学集合运算。一、set()的基本用法1.1创建空集合#创建空集合empty_se...
- 15个让Python编码效率翻倍的实用技巧
-
在软件开发领域,代码质量往往比代码数量更重要。本文整理的15个Python编码技巧,源自开发者在真实项目中验证过的工作方法,能够帮助您用更简洁的代码实现更清晰的逻辑。这些技巧覆盖基础语法优化到高级特性...
- 《Python从小白到入门》自学课程目录汇总(和猫妹学Python)
-
小朋友们好,大朋友们好!不知不觉,这套猫妹自学Python基础课程已经结束了,猫妹体会到了水滴石穿的力量。水一直向下滴,时间长了能把石头滴穿。只要坚持不懈,细微之力也能做出很难办的事。就比如咱们的学习...
- 8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……
-
近日,国外网友因为一道小学数学题在推特上争得热火朝天。事情的起因是一个推特网友@pjmdoll发布了一条推文,让他的关注者解答一道数学题:Viralmathequationshavebeen...
- Python学不会来打我(21)python表达式知识点汇总
-
在Python中,表达式是由变量、运算符、函数调用等组合而成的语句,用于产生值或执行特定操作。以下是对Python中常见表达式的详细讲解:1.1算术表达式涉及数学运算的表达式。例如:a=5b...
- Python运算符:数学助手,轻松拿咧
-
Python中的运算符就像是生活中的数学助手,帮助我们快速准确地完成这些计算。比如购物时计算总价、做家务时分配任务等。这篇文章就来详细聊聊Python中的各种运算符,并通过实际代码示例帮助你更好地理解...
- Python学不会来打我(17)逻辑运算符的使用方法与使用场景
-
在Python编程中,逻辑运算符(LogicalOperators)是用于组合多个条件表达式的关键工具。它们可以将多个布尔表达式连接起来,形成更复杂的判断逻辑,并返回一个布尔值(True或Fa...
- Python编程基础:运算符的优先级_python中的运算符优先级问题
-
多个运算符同时出现在一个表达式中时,先执行哪个,后执行哪个,这就涉及运算符的优先级。如数学表达式,有+、-、×、÷、()等,优先级顺序是()、×、÷、+、-,如5+(5-3)×4÷2,先计算(5-3)...
- Python运算符与表达式_python中运算符&的功能
-
一、运算符分类总览1.Python运算符全景图2.运算符优先级表表1.3.1Python运算符优先级(从高到低)优先级运算符描述结合性1**指数右→左2~+-位非/一元加减右→左3*//...
- Python操作Excel:从基础到高级的深度实践
-
Python凭借其丰富的库生态系统,已成为自动化处理Excel数据的强大工具。本文将深入探讨五个关键领域,通过实际代码示例展示如何利用Python进行高效的Excel操作,涵盖数据处理、格式控制、可视...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 使用 python-fire 快速构建 CLI_如何搭建python项目架构
- Python 闭包:从底层逻辑到实战避坑,附安全防护指南
- 使用Python实现九九乘法表的打印_用python打印一个九九乘法表
- 吊打面试官(四)--Java语法基础运算符一文全掌握
- Python三目运算基础与进阶_python三目运算符判断三个变量
- Python 中 必须掌握的 20 个核心函数——set()详解
- 15个让Python编码效率翻倍的实用技巧
- 《Python从小白到入门》自学课程目录汇总(和猫妹学Python)
- 8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……
- Python学不会来打我(21)python表达式知识点汇总
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)