分类模型综述
off999 2025-04-26 20:25 58 浏览 0 评论
分类模型是一切人工智能的基础。把分类模型研究清楚了,人工智能涉及的其他模型也就简单了
分类模型的输入,我们定义为X:它是一个向量[x0,x1,x2,x3,x4,...xn] 这个向量通常代表了一张图像,或者一段语音,或者一段文字等你要分类的对象
分类模型的输出,我们定义为Y,它是一个具体的值。比如Y=1,表示第一类。它也可以是一个向量,比如[1,0,0,0,0,0]这个向量表示第1类,[0,1,1,1,1,1]这个向量表示第2类。
既然模型的输入输出清楚了,那么模型就可以定义为Y = F(X)了,
模型就可以定义为一个函数F了,
所以只要实现把X 变换为 Y的函数,我们都可以称之为模型。
那么主要的分类模型有哪些呢?
- Y = k近邻模型(X)
- Y = 贝叶斯(X)
- Y = SVM(X)
- Y = 线性模型(X)
- Y = 决策树(X)
- Y = 神经网络(X)
k近邻模型:
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的k和点;
(4)确定前k个点所在类别的出现频率;
(5)返回当前k个点出现频率最高类别作为当前点的预测分类。
import numpy as np
import operator
group = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
#距离计算,新的数据与样本的距离进行减法
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
#对数组的每一项进行平方
sqDiffMat=diffMat**2
#数组每个特征值进行求和
sqDistances=sqDiffMat.sum(axis=1)
#每个值开方
distances=sqDistances**0.5
#索引值排序
sortedDistIndicies = distances.argsort()
#选取距离最小的前k个值进行索引,从k个中选取分类最多的一个作为新数据的分类
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.items(),
key=operator.itemgetter(1),reverse=True)
#返回前k个点中频率最高的类别
return sortedClassCount[0][0]
print(classify0([0,0],group,labels,3))
out:B
贝叶斯模型:
朴素贝叶斯分类器工作流程
朴素贝叶斯分类常用于文本分类,尤其是对于英文等语言来说,分类效果很好。它常用于垃圾文本过滤、情感预测、推荐系统等。
朴素贝叶斯分类器需要三个流程,我来给你一一讲解下这几个流程。
第一阶段:准备阶段
在这个阶段我们需要确定特征属性,比如上面案例中的“身高”、“体重”、“鞋码”等,并对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。
这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段:训练阶段
这个阶段就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率。
输入是特征属性和训练样本,输出是分类器。
第三阶段:应用阶段
这个阶段是使用分类器对新数据进行分类。输入是分类器和新数据,输出是新数据的分类结果。
好了,在这次课中你了解了概率论中的贝叶斯原理,朴素贝叶斯的工作原理和工作流程,也对朴素贝叶斯的强大和限制有了认识。下一节中,我将带你实战,亲自掌握 Python 中关于朴素贝叶斯分类器工具的使用。
支持向量机模型:
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
决策树模型:
决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。
决策树的生成主要分以下两步,这两步通常通过学习已经知道分类结果的样本来实现。
1. 节点的分裂:一般当一个节点所代表的属性无法给出判断时,则选择将这一节点分成2个
子节点(如不是二叉树的情况会分成n个子节点)
2. 阈值的确定:选择适当的阈值使得分类错误率最小 (Training Error)。
比较常用的决策树有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。
神经网络模型:
神经网络的神奇之处,就在于它可以自动做模型参数W和b的优化,在深度学习中,参数的数量有时会上亿,不过其优化的原理和我们这个两层神经网络是一样的。
相关推荐
- 使用 python-fire 快速构建 CLI_如何搭建python项目架构
-
命令行应用程序是开发人员最好的朋友。想快速完成某事?只需敲击几下键盘,您就已经拥有了想要的东西。Python是许多开发人员在需要快速组合某些东西时选择的第一语言。但是我们拼凑起来的东西在大多数时候并...
- Python 闭包:从底层逻辑到实战避坑,附安全防护指南
-
一、闭包到底是什么?你可以把闭包理解成一个"带记忆的函数"。它诞生时会悄悄记下自己周围的变量,哪怕跑到别的地方执行,这些"记忆"也不会丢失。就像有人出门时总会带上...
- 使用Python实现九九乘法表的打印_用python打印一个九九乘法表
-
任务要求九九乘法表的结构如下:1×1=11×2=22×2=41×3=32×3=63×3=9...1×9=92×9=18...9×9=81使用Python编写程序,按照上述格式打印出完整的九...
- 吊打面试官(四)--Java语法基础运算符一文全掌握
-
简介本文介绍了Java运算符相关知识,包含运算规则,运算符使用经验,特殊运算符注意事项等,全文5400字。熟悉了这些内容,在运算符这块就可以吊打面试官了。Java运算符的规则与特性1.贪心规则(Ma...
- Python三目运算基础与进阶_python三目运算符判断三个变量
-
#头条创作挑战赛#Python中你学会了三步运算,你将会省去很多无用的代码,我接下来由基础到进阶的方式讲解Python三目运算基础在Python中,三目运算符也称为条件表达式。它可以通过一行代码实现条...
- Python 中 必须掌握的 20 个核心函数——set()详解
-
set()是Python中用于创建集合的核心函数,集合是一种无序、不重复元素的容器,非常适合用于成员检测、去重和数学集合运算。一、set()的基本用法1.1创建空集合#创建空集合empty_se...
- 15个让Python编码效率翻倍的实用技巧
-
在软件开发领域,代码质量往往比代码数量更重要。本文整理的15个Python编码技巧,源自开发者在真实项目中验证过的工作方法,能够帮助您用更简洁的代码实现更清晰的逻辑。这些技巧覆盖基础语法优化到高级特性...
- 《Python从小白到入门》自学课程目录汇总(和猫妹学Python)
-
小朋友们好,大朋友们好!不知不觉,这套猫妹自学Python基础课程已经结束了,猫妹体会到了水滴石穿的力量。水一直向下滴,时间长了能把石头滴穿。只要坚持不懈,细微之力也能做出很难办的事。就比如咱们的学习...
- 8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……
-
近日,国外网友因为一道小学数学题在推特上争得热火朝天。事情的起因是一个推特网友@pjmdoll发布了一条推文,让他的关注者解答一道数学题:Viralmathequationshavebeen...
- Python学不会来打我(21)python表达式知识点汇总
-
在Python中,表达式是由变量、运算符、函数调用等组合而成的语句,用于产生值或执行特定操作。以下是对Python中常见表达式的详细讲解:1.1算术表达式涉及数学运算的表达式。例如:a=5b...
- Python运算符:数学助手,轻松拿咧
-
Python中的运算符就像是生活中的数学助手,帮助我们快速准确地完成这些计算。比如购物时计算总价、做家务时分配任务等。这篇文章就来详细聊聊Python中的各种运算符,并通过实际代码示例帮助你更好地理解...
- Python学不会来打我(17)逻辑运算符的使用方法与使用场景
-
在Python编程中,逻辑运算符(LogicalOperators)是用于组合多个条件表达式的关键工具。它们可以将多个布尔表达式连接起来,形成更复杂的判断逻辑,并返回一个布尔值(True或Fa...
- Python编程基础:运算符的优先级_python中的运算符优先级问题
-
多个运算符同时出现在一个表达式中时,先执行哪个,后执行哪个,这就涉及运算符的优先级。如数学表达式,有+、-、×、÷、()等,优先级顺序是()、×、÷、+、-,如5+(5-3)×4÷2,先计算(5-3)...
- Python运算符与表达式_python中运算符&的功能
-
一、运算符分类总览1.Python运算符全景图2.运算符优先级表表1.3.1Python运算符优先级(从高到低)优先级运算符描述结合性1**指数右→左2~+-位非/一元加减右→左3*//...
- Python操作Excel:从基础到高级的深度实践
-
Python凭借其丰富的库生态系统,已成为自动化处理Excel数据的强大工具。本文将深入探讨五个关键领域,通过实际代码示例展示如何利用Python进行高效的Excel操作,涵盖数据处理、格式控制、可视...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 使用 python-fire 快速构建 CLI_如何搭建python项目架构
- Python 闭包:从底层逻辑到实战避坑,附安全防护指南
- 使用Python实现九九乘法表的打印_用python打印一个九九乘法表
- 吊打面试官(四)--Java语法基础运算符一文全掌握
- Python三目运算基础与进阶_python三目运算符判断三个变量
- Python 中 必须掌握的 20 个核心函数——set()详解
- 15个让Python编码效率翻倍的实用技巧
- 《Python从小白到入门》自学课程目录汇总(和猫妹学Python)
- 8÷2(2+2) 等于1还是16?国外网友为这道小学数学题吵疯了……
- Python学不会来打我(21)python表达式知识点汇总
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)