百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

分类模型综述

off999 2025-04-26 20:25 47 浏览 0 评论

分类模型是一切人工智能的基础。把分类模型研究清楚了,人工智能涉及的其他模型也就简单了

分类模型的输入,我们定义为X:它是一个向量[x0,x1,x2,x3,x4,...xn] 这个向量通常代表了一张图像,或者一段语音,或者一段文字等你要分类的对象
分类模型的输出,我们定义为Y,它是一个具体的值。比如Y=1,表示第一类。它也可以是一个向量,比如[1,0,0,0,0,0]这个向量表示第1类,[0,1,1,1,1,1]这个向量表示第2类。

既然模型的输入输出清楚了,那么模型就可以定义为Y = F(X)了,
模型就可以定义为一个函数F了,
所以只要实现把X 变换为 Y的函数,我们都可以称之为模型。

那么主要的分类模型有哪些呢?

  • Y = k近邻模型(X)
  • Y = 贝叶斯(X)
  • Y = SVM(X)
  • Y = 线性模型(X)
  • Y = 决策树(X)
  • Y = 神经网络(X)

k近邻模型:

(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的k和点;
(4)确定前k个点所在类别的出现频率;
(5)返回当前k个点出现频率最高类别作为当前点的预测分类。

import numpy as np
import operator

group = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']

def classify0(inX,dataSet,labels,k):
    dataSetSize=dataSet.shape[0]
    #距离计算,新的数据与样本的距离进行减法
    diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
    #对数组的每一项进行平方
    sqDiffMat=diffMat**2
    #数组每个特征值进行求和
    sqDistances=sqDiffMat.sum(axis=1)
    #每个值开方
    distances=sqDistances**0.5
    #索引值排序
    sortedDistIndicies = distances.argsort()
    #选取距离最小的前k个值进行索引,从k个中选取分类最多的一个作为新数据的分类
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    sortedClassCount=sorted(classCount.items(),
    key=operator.itemgetter(1),reverse=True)
    #返回前k个点中频率最高的类别
    return sortedClassCount[0][0]
    
print(classify0([0,0],group,labels,3))

out:B

贝叶斯模型:
朴素贝叶斯分类器工作流程
朴素贝叶斯分类常用于文本分类,尤其是对于英文等语言来说,分类效果很好。它常用于垃圾文本过滤、情感预测、推荐系统等。
朴素贝叶斯分类器需要三个流程,我来给你一一讲解下这几个流程。
第一阶段:准备阶段
在这个阶段我们需要确定特征属性,比如上面案例中的“身高”、“体重”、“鞋码”等,并对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。
这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段:训练阶段
这个阶段就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率。
输入是特征属性和训练样本,输出是分类器。
第三阶段:应用阶段
这个阶段是使用分类器对新数据进行分类。输入是分类器和新数据,输出是新数据的分类结果。
好了,在这次课中你了解了概率论中的贝叶斯原理,朴素贝叶斯的工作原理和工作流程,也对朴素贝叶斯的强大和限制有了认识。下一节中,我将带你实战,亲自掌握 Python 中关于朴素贝叶斯分类器工具的使用。


支持向量机模型:

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。

决策树模型:

决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。

决策树的生成主要分以下两步,这两步通常通过学习已经知道分类结果的样本来实现。

1. 节点的分裂:一般当一个节点所代表的属性无法给出判断时,则选择将这一节点分成2个

子节点(如不是二叉树的情况会分成n个子节点)

2. 阈值的确定:选择适当的阈值使得分类错误率最小 (Training Error)。

比较常用的决策树有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。

神经网络模型:

神经网络的神奇之处,就在于它可以自动做模型参数W和b的优化,在深度学习中,参数的数量有时会上亿,不过其优化的原理和我们这个两层神经网络是一样的。

相关推荐

python入门到脱坑经典案例—清空列表

在Python中,清空列表是一个基础但重要的操作。clear()方法是最直接的方式,但还有其他方法也可以实现相同效果。以下是详细说明:1.使用clear()方法(Python3.3+推荐)...

python中元组,列表,字典,集合删除项目方式的归纳

九三,君子终日乾乾,夕惕若,厉无咎。在使用python过程中会经常遇到这四种集合数据类型,今天就对这四种集合数据类型中删除项目的操作做个总结性的归纳。列表(List)是一种有序和可更改的集合。允许重复...

Linux 下海量文件删除方法效率对比,最慢的竟然是 rm

Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...

数据结构与算法——链式存储(链表)的插入及删除,

持续分享嵌入式技术,操作系统,算法,c语言/python等,欢迎小友关注支持上篇文章我们讲述了链表的基本概念及一些查找遍历的方法,本篇我们主要将一下链表的插入删除操作,以及采用堆栈方式如何创建链表。链...

Python自动化:openpyxl写入数据,插入删除行列等基础操作

importopenpyxlwb=openpyxl.load_workbook("example1.xlsx")sh=wb['Sheet1']写入数据#...

在Linux下软件的安装与卸载(linux里的程序的安装与卸载命令)

通过apt安装/协助软件apt是AdvancedPackagingTool,是Linux下的一款安装包管理工具可以在终端中方便的安装/卸载/更新软件包命令使用格式:安装软件:sudoapt...

Python 批量卸载关联包 pip-autoremove

pip工具在安装扩展包的时候会自动安装依赖的关联包,但是卸载时只删除单个包,无法卸载关联的包。pip-autoremove就是为了解决卸载关联包的问题。安装方法通过下面的命令安装:pipinsta...

用Python在Word文档中插入和删除文本框

在当今自动化办公需求日益增长的背景下,通过编程手段动态管理Word文档中的文本框元素已成为提升工作效率的关键技术路径。文本框作为文档排版中灵活的内容容器,既能承载多模态信息(如文字、图像),又可实现独...

Python 从列表中删除值的多种实用方法详解

#Python从列表中删除值的多种实用方法详解在Python编程中,列表(List)是一种常用的数据结构,具有动态可变的特性。当我们需要从列表中删除元素时,根据不同的场景(如按值删除、按索引删除、...

Python 中的前缀删除操作全指南(python删除前导0)

1.字符串前缀删除1.1使用内置方法Python提供了几种内置方法来处理字符串前缀的删除:#1.使用removeprefix()方法(Python3.9+)text="...

每天学点Python知识:如何删除空白

在Python中,删除空白可以分为几种不同的情况,常见的是针对字符串或列表中空白字符的处理。一、删除字符串中的空白1.删除字符串两端的空白(空格、\t、\n等)使用.strip()方法:s...

Linux系统自带Python2&yum的卸载及重装

写在前面事情的起因是我昨天在测试Linux安装Python3的shell脚本时,需要卸载Python3重新安装一遍。但是通过如下命令卸载python3时,少写了个3,不小心将系统自带的python2也...

如何使用Python将多个excel文件数据快速汇总?

在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...

【第三弹】用Python实现Excel的vlookup功能

今天继续用pandas实现Excel的vlookup功能,假设我们的2个表长成这样:我们希望把Sheet2的部门匹在Sheet1的最后一列。话不多说,先上代码:importpandasaspd...

python中pandas读取excel单列及连续多列数据

案例:想获取test.xls中C列、H列以后(当H列后列数未知时)的所有数据。importpandasaspdfile_name=r'D:\test.xls'#表格绝对...

取消回复欢迎 发表评论: