万万没想到,除了香农计划,Python3.11竟还有这么多性能提升
off999 2025-04-29 03:25 27 浏览 0 评论
众所周知,Python 3.11 版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!
作者:Beshr Kayali
译者:豌豆花下猫@Python猫
英文:https://log.beshr.com/python-311-speedup-part-1
转载请保留作者及译者信息!
Python 3.11 在几天前发布了,它照例带来了很多新特性,例如异常组、细粒度的错误位置与堆栈回溯、标准库对 TOML 的解析支持,当然,还有备受大家期待的由 faster CPython 项目带来的速度提升。
根据 pyperformance 的基准测试,CPython 3.11 比 CPython 3.10 平均快 25%。这项改进的原因之一是 Guido 命名的“香农计划”(即 faster CPython)。对于 3.11 版本,这个计划在两个主要方向进行了大量优化:启动时和运行时。
除此之外,Python 3.11 还包含有其它的优化,这些优化不属于香农计划。
在本文中,我将详细介绍 3.11.0 稳定版中常规优化的细节(即非 faster CPython 项目的改进)。
(译注:作者表示将另写一篇文章介绍 faster CPython 的改进细节,届时,我也将继续翻译,敬请期待!)
目录
- 优化了一些 printf 风格 % 的格式化代码
- 优化了 Python 大整数的除法
- 优化了数字 PyLongs 求和
- 精简列表的扩容操作,提升了 list.append 性能
- 减少了全 unicode 键的字典的内存占用
- 提升了使用asyncio.DatagramProtocol 传输大文件的速度
- 对于 math 库:优化了 comb(n, k) 与 perm(n, k=None)
- 对于 statistics 库:优化了 mean(data)、variance(data, xbar=None) 与 stdev(data, xbar=None)
- 纯 ASCII 字符串的 unicodedata.normalize(),提升到常数时间
优化了一些 printf 风格 % 的格式化代码
使用格式化的字符串字面量(formatted string literals)是最快的格式化字符串的方法。
Python 3.10 中的一个简单基准测试:
$ python -m pyperf timeit -s \
'k = "foo"; v = "bar"' -- '"%s = %r" % (k, v)'
.....................
Mean +- std dev: 187 ns +- 8 ns
但是使用 f-string 似乎要快 42%:
$ python -m pyperf timeit -s \
'k = "foo"; v = "bar"' -- 'f"{k!s} = {v!r}"'
.....................
Mean +- std dev: 131 ns +- 9 ns
优化性能的手段是将简单的 C 风格的格式化方法转换为 f-string 方法。在 3.11.0 中,只转换了 %s、%r 和 %a 三种,但是目前有一个待合入的 pull request,将会支持:%d、%i、%u、%o、%x、%X、%f、 %e、%g、%F、%E、%G。
例如,下面是 Python 3.11 中相同基准测试的结果:
$ python -m pyperf timeit -s \
'k = "foo"; v = "bar"' -- '"%s = %r" % (k, v)'
.....................
Mean +- std dev: 100 ns +- 5 ns
大约快了 87%!当然,3.11 中其它的优化对此也有影响,比如更快的解释器启动时间。
优化了 Python 大整数的除法
在 Python 3.10 中:
python -m pyperf timeit -s 'x=10**1000' -- 'x//10'
.....................
Mean +- std dev: 1.18 us +- 0.02 us
在 Python 3.11 中:
python -m pyperf timeit -s 'x=10**1000' -- 'x//10'
.....................
Mean +- std dev: 995 ns +- 15 ns
大约快了18%。
这项优化源自 Mark Dickinson 的一个发现,即编译器总会生成 128:64 的除法指令,尽管处理的是 30 位的数值。
即使在 x64 上,Python 的除法也有些残缺。假设是 30 位数字,则多精度除法所需的基本结构是 64 位除以 32 位的无符号整数除法,产生一个 32 位的商(理想情况下还会产生一个 32 位余数)。有一个 x86/x64 指令可以做到这一点,也就是 DIVL。但是如果不使用内联汇编,当前版本的 GCC 和 Clang 显然做不到从 longobject.c 中发出该指令——它们只会在 x64 上使用 DIVQ(128 位除以 64 位的除法,尽管被除数的前 64 位被设为零),而在 x86 上则使用固有的 __udivti3 或 __udivti4。
——Mark Dickinson(全文)
优化了数字 PyLongs 求和
这里有一个 issue,它发现 Python 2.7 中 sum 的速度比 Python 3 快得多。不幸的是,在某些条件下,3.11.0 似乎仍然如此。
Python 2.7:
$ python -m pyperf timeit -s 'd = [0] * 10000' -- 'sum(d)'
.....................
Mean +- std dev: 37.4 us +- 1.1 us
Python 3.10:
$ python -m pyperf timeit -s 'd = [0] * 10000' -- 'sum(d)'
.....................
Mean +- std dev: 52.7 us +- 1.3 us
Python 3.11:
$ python -m pyperf timeit -s 'd = [0] * 10000' -- 'sum(d)'
.....................
Mean +- std dev: 39.0 us +- 1.0 us
Python3.10 和 3.11 之间的区别在于,通过在 sum 函数的快速加法分支中内联对单个数字 PyLongs 的解包,可以提升在单个数字 PyLongs 上调用 sum 的性能。这样做可以避免在解包时调用 PyLong_AsLongAndOverflow。
值得注意的是,在某些情况下,Python 3.11 在整数求和时仍然明显慢于 Python 2.7。我们希望在 Python 中通过实现更高效的整数,获得更多的改进。
精简列表的扩容操作,提升了 list.append 性能
在 Python 3.11 中,list.append 有了显著的性能提升(大约快 54%)。
Python 3.10 的列表 append:
$ python -m pyperf timeit -s \
'x = list(map(float, range(10_000)))' -- '[x.append(i) for i in range(10_000)]'
.....................
Mean +- std dev: 605 us +- 20 us
Python 3.11 的列表 append:
$ python -m pyperf timeit -s \
'x = list(map(float, range(10_000)))' -- '[x.append(i) for i in range(10_000)]'
.....................
Mean +- std dev: 392 us +- 14 us
对于简单的列表推导式,也有一些小的改进:
Python 3.10:
$ python -m pyperf timeit -s \
'' -- '[x for x in list(map(float, range(10_000)))]'
.....................
Mean +- std dev: 553 us +- 19 us
Python 3.11:
$ python -m pyperf timeit -s \
'' -- '[x for x in list(map(float, range(10_000)))]'
.....................
Mean +- std dev: 516 us +- 16 us
译注:记得在 3.9 版本的时候,Python 优化了调用 list()、dict() 和 range() 等内置类型的速度,在不起眼处,竟还能持续优化!
减少了全 unicode 键的字典的内存占用
这项优化令 Python 在使用全为 Unicode 键的字典时,缓存的效率更高。这是因为使用的内存减少了,那些 Unicode 键的哈希会被丢弃,因为那些 Unicode 对象已经有哈希了。
例如,在 64 位平台上,Python 3.10 运行结果:
>>> sys.getsizeof(dict(foo="bar", bar="foo"))
232
在 Python 3.11 中:
>>> sys.getsizeof(dict(foo="bar", bar="foo"))
184
(译注:插个题外话,Python 的 getsizeof 是一种“浅计算”,这篇《Python在计算内存时应该注意的问题?》区分了“深浅计算”,可以让你对 Python 计算内存有更深的理解。)
提升了使用asyncio.DatagramProtocol 传输大文件的速度
asyncio.DatagramProtocol 提供了一个用于实现数据报(UDP)协议的基类。有了这个优化,使用asyncio UDP 传输大文件(比如 60 MiB)将比 Python 3.10 快 100 多倍。
这是通过计算一次缓冲区的大小并将其存储在一个属性中来实现的。这使得通过 UDP 传输大文件时,asyncio.DatagramProtocol 有着数量级的提速。
PR msoxzw 的作者提供了以下的 测试脚本。
对于 math 库:优化了 comb(n, k) 与 perm(n, k=None)
Python 3.8 在math 标准库中增加了 comb(n, k) 和 perm(n, k=None) 函数。两者都用于计算从 n 个无重复的元素中选择 k 个元素的方法数,comb 返回无序计算的结果,而perm 返回有序计算的结果。(译注:即一个求组合数,一个求排列数)
3.11 的优化由多个较小的改进组成,比如使用分治算法来实现 Karatsuba 大数乘法,以及尽可能用 C 语言unsigned long long 类型而不是 Python 整数进行comb计算(*)。
另外一项改进是针对较小的 k 值(0 <= k <= n <= 67):
(译注:以下两段费解,暂跳过)
对于 0 <= k <= n <= 67, comb(n, k) always fits into a uint64_t. We compute it as comb_odd_part << shift where 2 ** shift is the largest power of two dividing comb(n, k) and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be calculated efficiently via arithmetic modulo 2 ** 64, using three lookups and two uint64_t multiplications, while the necessary shift can be computed via Kummer's theorem: it's the number of carries when adding k to n - k in binary, which in turn is the number of set bits of n ^ k ^ (n - k). *
One more improvement is that the previous popcount-based code for computing the largest power of two dividing math.comb(n, k) (for small n) got replaced with a more direct method based on counting trailing zeros of the factorials involved. (*).
Python 3.10:
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(100, 55)'
.....................
Mean +- std dev: 3.72 us +- 0.07 us
# ---
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(10000, 5500)'
.....................
Mean +- std dev: 11.9 ms +- 0.1 ms
Python 3.11:
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(100, 55)'
.....................
Mean +- std dev: 476 ns +- 20 ns
# ---
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(10000, 5500)'
.....................
Mean +- std dev: 2.28 ms +- 0.10 ms
对于 statistics 库:优化了 mean(data)、variance(data, xbar=None) 与 stdev(data, xbar=None)
3.11 优化了statistics模块中的 mean、variance与stdev 函数。如果入参是一个迭代器,则会直接用于计算,而不是先将其转换为列表。这种计算方法 的速度比之前的快了一倍。*
Python 3.10:
# Mean
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.mean(range(1_000))'
.....................
Mean +- std dev: 255 us +- 11 us
# Variance
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.variance((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 77.0 us +- 2.9 us
# Sample standard deviation (stdev)
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.stdev((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 78.0 us +- 2.2 us
Python 3.11:
# Mean
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.mean(range(1_000))'
.....................
Mean +- std dev: 193 us +- 7 us
# Variance
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.variance((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 56.1 us +- 2.3 us
# Sample standard deviation (stdev)
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.stdev((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 59.4 us +- 2.6 us
纯 ASCII 字符串的 unicodedata.normalize(),提升到常数时间
对于 unicodedata.normalize() 方法,如果提供的入参是纯 ASCII 字符串,则通过 unicode 快速检查算法 迅速返回结果。这项检查使用的是PyUnicode_IS_ASCII 实现。
Python 3.10:
$ python -m pyperf timeit -s \
'import unicodedata' -- 'unicodedata.normalize("NFC", "python")'
.....................
Mean +- std dev: 83.3 ns +- 4.3 ns
Python 3.11:
$ python -m pyperf timeit -s \
'import unicodedata' -- 'unicodedata.normalize("NFC", "python")'
.....................
Mean +- std dev: 34.2 ns +- 1.2 ns
最后的话:
- 我写这篇文章是为了加深自己对 Python 3.11 最新成果的认识。如果内容有错,请通过email 或者 Twitter告诉我。(译注:本翻译是出于促进自己学习及加强理解的目的,若有错漏,欢迎指正!)
- 附 HackerNews 上的评论
- 在下一篇文章中,我将分析 faster CPython 项目带来的优化点。敬请期待!
相关推荐
- win7x86是32位还是64位
-
32位win7x86是32位操作系统,win7x64是64位操作系统。扩展资料Windows7,中文名称视窗7,是由微软公司(Microsoft)开发的操作系统,内核版本号为WindowsNT...
- 用我告诉你安装win7(安装win7教程)
-
方法一:使用工具在线一键下载安装win7(win7正式版只需使用正版密钥激活即可)1、在电脑安装好小白一键重装系统工具打开,选择原版win7旗舰版系统,点击安装此系统。2、等待软件自动下载系统镜像文件...
- sd卡如何修复(如何修复sd卡视频教程)
-
修复SD卡的三个步骤如下:1.使用磁盘检测工具检查SD卡的错误:您可以使用Windows操作系统中自带的磁盘检查工具或第三方软件来检查并修复SD卡中的错误。2.格式化SD卡:如果检查后发现错误无法...
- 安卓手机杀毒软件哪个最好用
-
腾讯手机管家的守护老人安全功能版本我在用,我来说说吧。此版本是专门为守护老人安全设计推出的,不但有效拦截诈骗短信,电话,木马病毒,钓鱼网址,辟谣功能可以帮助老人立即分辨养生讯息,银行卡故障讯息,保险异...
- xp3用什么模拟器打开(xp3用什么模拟器打开好)
-
可以按照以下的步骤排查解决:首先,游戏必须要使kirikiri引擎,这点可以从文件中是否含有部分xp3后缀的文件来判断然后用模拟器打开date.xp3就行了,部分汉化游戏是直接打开exe程序如果遇到d...
- 固态硬盘用mbr还是guid(固态硬盘guid好还是mbr好)
-
如果电脑原装系统是win8或者以上的,那么硬盘分区表格式为GUID(GPT)格式的;如果是win7以下的,那么一般就是MBR的。主引导记录(MBR)是计算机开机后访问硬盘时所必须要读取的首个扇区,由分...
- 为什么fps大神都是400dpi(fps为什么高)
-
400DPI,在游戏里调节不同英雄的鼠标灵敏度,可以保证最小范围微调改动鼠标移动速度。因为DPI和灵敏度是乘积关系。举个例子:如果你玩麦克雷时鼠标DPI是3200,游戏内灵敏度是1。但你切换到源氏和闪...
- 系统集成项目管理工程师难考吗
-
系统集成项目管理工程师考试的普遍通过率是在10%左右,但是并不表示考试真的有那么难。因为考试本身没有报考条件的限制,且考试报名费用很低,很多人都不重视考试。所以通过率普遍偏低,只要你认真备考,有一...
- 360影视大全下载2025免费版(下载360影视大全最新版下载安装到手机版)
-
你好朋友360影视大全里的很多视频都是免费的,建议安装最新的360影视大全就可以了打开360视频,搜索自己需要的视频,点击360播放器右下角的下载箭头,即可将视频进行下载,下载完毕之后视频会保存在36...
- 360安全卫士手机版下载(360安全卫士官方免费下载手机版5.5.0)
-
相当靠谱360手机卫士是一款由奇虎网推出的功能强、效果好、受用户欢迎的上网安全软件。360安全卫士拥有查杀木马、清理插件、修复漏洞、电脑体检、保护隐私等多种功能,并独创了“木马防火墙”“360密盘”等...
- deepin和统信uos(统信和deepin的区别)
-
差不多。1Deepin原名LinuxDeepin、deepinos、深度操作系统,于2014年4月改名Deepin。deepin团队基于Qt/C++(用于前端)和Go(用于后端)开发了的全新深度桌...
- 三星驱动(三星驱动板)
-
驱动是必须装的,但不需要单独安装驱动。 1、电脑的所有硬件,必然要装驱动,键盘、鼠标什么的,都是有驱动的。驱动是软件和硬件结合的桥梁。但多数普通常见的硬件,驱动是widnows系统自带的,不需要用户...
- u盘启动杀毒软件(u盘杀毒系统)
-
有,但是主要是专杀工具,全面的综合杀毒软件基本上没有,因为没什么用。 1、放在U盘里的杀毒软件,就是不安装,也不监控,只杀毒的软件。 2、目前的杀毒软件的工作机制,主要是监控,监控电脑不感染病...
- 联想维修站点查询官网(联想 维修 服务网点)
-
您可以在联想的官方网站上查询到附近的授权维修服务点,或者拨打联想的客服电话寻求帮助。在维修服务点,您可以享受到专业的维修服务,包括硬件故障、软件问题、系统优化等方面的维护和维修。维修人员将会根据您的电...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
系统u盘安装(win11系统u盘安装)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
