百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python数据分析:介绍pandas库的数据类型Series和DataFrame

off999 2025-04-29 03:26 7 浏览 0 评论

安装pandas

pip install pandas -i https://mirrors.aliyun.com/pypi/simple/

使用pandas

直接导入即可 import pandas as pd

pandas的数据结构

pandas提供了两种主要的数据结构:Series 和 DataFrame,类似于python提供list列表,dict字典,tuple元组等数据类型用于存储数据。

1. Series

Series 是一种一维的数组(类似于 Python 的列表),可以存储任何数据类型(整数、字符串、浮点数、Python对象等)。Series 是一种带有标签的数据结构,每个数据点都有一个索引。

创建 Series

创建的series结构,默认索引从0开始(像list的索引一样),但是可以指定索引。

1)从列表创建Series

import pandas as pd
data = [1, 2, 3, 4, 5]
s = pd.Series(data)
print(s)

2)从字典创建 Series,键作为索引

import pandas as pd
data_dict = {'a': 1, 'b': 2, 'c': 3}
s = pd.Series(data_dict)
print(s)

3)指定索引创建Series

import pandas as pd
data = [1, 2, 3, 4, 5]
s = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])
print(s)

Series的基本属性

  • values:返回 Series 中的数据值。
  • index:返回 Series 中的索引。
  • dtype:返回 Series 中数据的数据类型。
  • name:返回或设置 Series 的名称。

举例:定义一个series接口数据并指定索引和名称

data = [[1, 2, 3], [4, 5,6]]
s = pd.Series(data, name='一维数组',index=['a', 'b'])
print(f'值:{s.values}')
print(f'索引:{s.index}')
print(f'数据类型 {s.dtype}')
print(f'名称 {s.name}')

Series的函数

1)value_counts函数:对Series对象进行计数

  1. normalize:默认为False。设置为True,则函数返回每个值占总数的比例,而不是计数。
  2. sort:是否对结果进行排序。
  3. ascending:默认为False,计数结果按降序排列;设置为True,则按升序对计数进行排序。
  4. dropna:默认为True,表示从计数中排除NaN值。设置为False,则包含NaN值的计数也会被纳入统计。
  5. bins:整数、字符串或序列。如果给定,则返回的Series将包含给定数量的bin(箱)的计数。这个参数主要用于数值型数据的分箱处理,我们通常使用cut()函数进行分箱。

举例:

1)定义Series数据,计数后按照升序排列:

data_list =  ['A', 'C', 'B', 'A', 'A', 'C', 'B', 'C','C']
se = pd.Series(data_list)
print(se.value_counts(ascending=True))

结果:

B 2

A 3

C 4

Name: count, dtype: int64

2)对数值型Series对象进行分箱后统计计数

data_list =  [1, 2,3,4,3,2,1,2,4,5,7,8,4,3,15,10]
se = pd.Series(data_list)
#bins=3 自动分了三个数据范围
print(se.value_counts(ascending=True,bins=3))

结果:

(10.333, 15.0] 1

(5.667, 10.333] 3

(0.985, 5.667] 12

Name: count, dtype: int64

3)使用pandas.cut()函数进行分箱处理

data_list =  [1, 2,3,4,3,2,1,2,4,5,7,8,4,3,15,10]
# 指定箱子的边界
bins = [0, 2, 4, 6, 8]
labels = ['0-2', '2-4', '4-6', '6-8']
cut_data = pd.cut(data_list, bins=bins, labels=labels)

# 使用value_counts()函数对分箱后的数据进行计数
counts = cut_data.value_counts()
# 打印结果
print(counts)

结果:

0-2 5

2-4 6

4-6 1

6-8 2

Name: count, dtype: int64

2. DataFrame

DataFrame 是一个二维的表格数据结构,具有标记的轴(行和列)。其中每一列相当于一个Series。

创建 DataFrame

和Series结构一样默认索引从0开始,当然也可以指定索引。

1)从字典创建 DataFrame,字典的键是列名

import pandas as pd
data_dict = {
'name': ['lilei', 'lili', 'wanglei'],
'age': [25, 30, 35],
'city': ['shanghai', 'shenzhen', 'nanjing']}
df = pd.DataFrame(data_dict)
print(df)

2)从列表的列表创建DataFrame

data = [
['lilei', 25],
['lili', 30],
['wanglei', 35]
]
df = pd.DataFrame(data, columns=['Name', 'Age'])
print(df)

3)从Numpy 数组创建DataFrame并指定列名和索引

import numpy as np
data = np.array([[1, 2], [3, 4], [5, 6]])
df = pd.DataFrame(data, columns=['A', 'B'],index=['a','b','c'])
print(df)

Series和DataFrame数据的常用函数和功能

head(n):返回前 n 个元素,默认返回前5个

tail(n):返回后 n 个元素,默认返回后5个。

unique():返回 Series 中的唯一值(去掉重复的值)。

isnull():返回一个布尔 Series,指示每个值是否为 NaN。

dropna():删除所有 NaN值(numpy.nan)或者None值,返回一个新的数据

举例:定义一个series结构数据,打印下上面方法获取的数据

data = [1, 2, 3, 4, 5,[6,7],[8],None,{'a':10}]
s = pd.Series(data)
print(f'前3个元素\n {s.head(3)}')
print(f'后3个元素\n {s.tail(3)}')
print(f'判断是否为null\n {s.isnull()}')

举例:定义一个series结构数据,打印删除NaN值后的数据

import numpy as np
data = [1, 2, 3, 4, 5,None,np.nan]
s = pd.Series(data)
new_s =s.dropna()
print(f'删除NaN值\n {new_s}')

举例:定义一个series结构数据,打印去重后的数据

data = [1, 2, 3, 4, 5,4,5,6]
s = pd.Series(data)
print(f'唯一值 {s.unique()}')

to_dict函数:将DataFrame数据转换为字典

字典的键和值对应的是列名和列值

举例:读取csv文件内容,并转换为字典

import pandas as pd
dataframe = pd.read_csv("1.csv")
print(dataframe)
#将DataFrame数据格式转换为字典
print(dataframe.to_dict())

结果如下:

选择列数据

import pandas as pd
dataframe = pd.read_csv("1.csv")
  • 选择某一列数据
#选择Nmae这一列
print(dataframe['zx`	Name']) 
#选择Age这一列
print(dataframe.age) 

#通过Ioc函数选择Name这一列
print(dataframe.loc[:,['Name']])

返回的某一列的数据类型是一个Series类型,对某列数据可以做循环打印该列的值。

for i in dataframe.Name:
   print(i)
  • 选择多列
#选择Nmae,age这两列
print(dataframe[['Name','age']])
#通过loc()函数选择Name和age两列
print(dataframe.loc[:,['Name','age']])

选择行数据

使用方式类似于list的切片操作

#取前3行数据
print(dataframe[0:3]) 
 #取倒数第4行和第5行
print(dataframe[-4:-2])
#取前10行中每2行取1个
print(dataframe[0:10:2]) 

通过iIoc函数获取多行数据

#取前10行数据
print(dataframe.iloc[:10,:]) 

选择指定的行和列数据

通过Ioc函数取某些行和列数据

print(dataframe.loc[0:3,['Name']])
print(dataframe.loc[0:3,['Name','age']])

按条件选择

举例:筛选age列大于25的数据

print(dataframe[dataframe.age > 25])

举例:筛选性别为男的数据

print(dataframe[dataframe.sex == 'man'])

举例: 筛选索引等于0的数据

print(dataframe[dataframe.index == 0])

举例:筛选性别为男并age大于25的数据

print(dataframe[(dataframe.sex == 'man') & (dataframe.age > 25)])

举例:筛选年龄大于25的Name这一列的数据

print(dataframe[dataframe.age > 25].loc[:,['Name']])

sort_values函数:使用该函数进行排序

参数介绍

  • by:传入单个字符串或字符串列表(1个或者多个列名),表示按照列名进行排序。
  • axis:默认为0。0表示按列的值排序,1表示按行的值排序;一般不使用
  • ascending:布尔值或布尔值列表,默认为True。True表示升序排序,False表示降序排序。如果是一个列表,则列表中的每个元素对应by参数中每个列的排序顺序。
  • inplace:布尔值,默认为False。如果为True,则直接修改原DataFrame并返回None;如果为False,则返回一个新的排序后的DataFrame副本。
  • kind:排序算法的选择,默认为'quicksort'。其他选项包括'mergesort'和'heapsort'。对于大数据集,'quicksort'通常是最快的,但不一定是最稳定的。
  • na_position:{'first', 'last'},默认为'last'。表示缺失值(NaN)应该被放在排序后的数组的开始还是结束。
  • ignore_index:布尔值,默认为False。如果为True,则结果DataFrame的索引将被重置为默认的整数索引。

测试代码:

1)按列排序(升序)

print(dataframe.sort_values(by='Name'))
print(dataframe.sort_values(by=['Name','age']))


2)按列排序(倒序)

print(dataframe.sort_values(by='age',ascending=False))

3)不同列排列顺序不同(比如第一列正序,第二列倒序)

print(dataframe.sort_values(by=['Name','age'],ascending=[True,False]))

insert函数:插入列数据

插入某一列数据,参数介绍:

  • loc: 传入整数,代表插入在第几列(0代表第1列)
  • column:列名
  • value:每列的值(单个值表示每一行值相同;传入列表,列表中的元素对应每一行的值)
  • allow_duplicates:为True表示允许列名重复,否则不允许

测试代码:

#对DataFrame对象插入数据
dataframe.insert(2,'area','China')
dataframe.insert(3,'area',['China','America','korea','japan','China','America','korea','japan'],allow_duplicates=True)
print(dataframe)

结果:

groupby函数:分组聚合

支持对一个或多个列的值进行分组,应用聚合函数(如求和、平均值、最大值、最小值等)或其他操作。类似于大家使用sql查询数据库语句时通过group by分组聚合一样。

参数介绍:

  1. by:指定要根据哪个字段进行分组。可以是一个列名或者包含多个列名的列表。默认值None,表示不分组。
  2. axis:指定分组的方向。0或index表示按列分组(即沿着行的方向进行分组)。1或columns表示按行分组(即沿着列的方向进行分组)。默认情况下是0,即按列分组。
  3. level:当DataFrame的索引为多重索引时,level参数指定用于分组的索引级别。可以传入多重索引中索引的下标(如0, 1, ...)或索引名。如果传入多个级别,则使用列表形式。level参数不能与by参数同时使用。
  4. as_index:指定分组后的结果是否将分组列的值作为索引。如果按单列分组,结果默认是单索引;如果按多列分组,结果默认是多重索引。将as_index设置为False可以重置索引为默认的整数索引(0, 1, ...)。
  5. sort:指定分组结果是否按照分组列的值进行排序。默认情况下是True,即按升序排列。将sort设置为False则不排序,这可能会提升性能。
  6. observed:指定是否观察数据的层次结构。在某些情况下,当分组列包含大量唯一值时,设置observed=True可以提高性能,因为它只考虑在数据中出现的值。
  7. dropna:默认情况下,分组列的NaN值在分组结果中不保留。将dropna设置为False可以保留NaN分组。

函数执行后返回的是DataFrameGrouyBy对象,该对象支持多个聚合函数,类似如下:

  1. sum():计算分组数据的总和。
  2. mean():计算分组数据的平均值。
  3. max():找出分组数据中的最大值。
  4. min():找出分组数据中的最小值。
  5. median():计算分组数据的中位数。
  6. std():计算分组数据的标准差,反映数据的离散程度。
  7. var():计算分组数据的方差,也是反映数据离散程度的一个指标。
  8. count():计算分组中非空(非NA/null)值的数量。
  9. first():返回分组中的第一个值。
  10. last():返回分组中的最后一个值。
  11. nth(n):返回分组中的第n个值,n可以是正数也可以是负数,负数表示从末尾开始计数。
  12. size():返回分组中的元素数量。
  13. prod():计算分组数据的乘积。
  14. nunique():计算分组中唯一值的数量。

此外,pandas的agg()函数允许你传入一个函数列表或字典,对分组数据应用多个聚合函数。例如:agg(['sum', 'mean', 'max']) 或者 agg({'某一列': ['sum', 'mean', 'max']})

举例:定义一个DataFrame的数据

import pandas as pd
data_dict = {'group': ['A', 'C', 'B', 'A', 'A', 'C', 'B', 'B', 'C'],
'name': ['lilei', 'lili', 'wanglei', 'wangning', 'wangling', 'wangming', 'wangyu', 'liyi', 'xiaolei'],
'age': [25, 30, 35,21,23,24,25,26,32],
'city': ['shanghai', 'shenzhen', 'nanjing','shanghai', 'shenzhen', 'nanjing','shanghai', 'shenzhen', 'nanjing']}
df = pd.DataFrame(data_dict)

1)按照单个group列分组,统计age列的汇总值

print(df.groupby(by='group')['age'].sum())

2)按照多个列分组后,统计age列汇总值,最大值,最小值等

#以下两种方式都可以
print(df.groupby(by=['group','city'])['age'].agg(['sum','max','min']))
print(df.groupby(by=['group','city']).agg({'age':['sum','max','min']}))

3)按照单个group列分组,统计age列的汇总值并添加为新的一列数据

我们可以使用transform函数对每个组应用一个聚合函数,该函数将返回与原始DataFrame形状相同的对象

#聚合后添加sum列
df['sum'] = df.groupby(by='group')['age'].transform('sum')
print(df)

4)按照单个group列分组,统计age列的汇总值,并使用filter函数过滤某些数据

# 只保留'age'列总和大于80的组
filtered =  df.groupby(by='group').filter(lambda x: (x['age'].sum() > 80))
print(filtered)


共勉: 东汉·班固《汉书·枚乘传》:“泰山之管穿石,单极之绠断干。水非石之钻,索非木之锯,渐靡使之然也。”

-----指水滴不断地滴,可以滴穿石头;

-----比喻坚持不懈,集细微的力量也能成就难能的功劳。

----感谢读者的阅读和学习,谢谢大家。

相关推荐

python gui编程框架推荐以及介绍(python gui开发)

Python的GUI编程框架有很多,这里为您推荐几个常用且功能强大的框架:Tkinter:Tkinter是Python的标准GUI库,它是Python内置的模块,无需额外安装。它使用简单,功能较为基础...

python自动化框架学习-pyautogui(python接口自动化框架)

一、适用平台:PC(windows和mac均可用)二、下载安装:推荐使用命令行下载(因为会自动安装依赖库):pipinstallPyAutoGUI1该框架的依赖库还是蛮多的,第一次用的同学耐心等...

Python 失宠!Hugging Face 用 Rust 新写了一个 ML框架,现已低调开源

大数据文摘受权转载自AI前线整理|褚杏娟近期,HuggingFace低调开源了一个重磅ML框架:Candle。Candle一改机器学习惯用Python的做法,而是Rust编写,重...

Flask轻量级框架 web开发原来可以这么可爱呀~(建议收藏)

Flask轻量级框架web开发原来可以这么可爱呀大家好呀~今天让我们一起来学习一个超级可爱又实用的PythonWeb框架——Flask!作为一个轻量级的Web框架,Flask就像是一个小巧精致的工...

Python3使用diagrams生成架构图(python架构设计)

目录技术背景diagrams的安装基础逻辑关系图组件簇的定义总结概要参考链接技术背景对于一个架构师或者任何一个软件工程师而言,绘制架构图都是一个比较值得学习的技能。这就像我们学习的时候整理的一些Xmi...

几个高性能Python网络框架,高效实现网络应用

Python作为一种广泛使用的编程语言,其简洁易读的语法和强大的生态系统,使得它在Web开发领域占据重要位置。高性能的网络框架是构建高效网络应用的关键因素之一。本文将介绍几个高性能的Python网络框...

Web开发人员的十佳Python框架(python最好的web框架)

Python是一种面向对象、解释型计算机程序设计语言。除了语言本身的设计目的之外,Python的标准库也是值得大家称赞的,同时Python还自带服务器。其它方面,Python拥有足够多的免费数据函数库...

Diagram as Code:用python代码生成架构图

工作中常需要画系统架构图,通常的方法是通过visio、processon、draw.io之类的软件,但是今天介绍的这个软件Diagrams,可以通过写Python代码完成架构图绘制,确实很co...

分享一个2022年火遍全网的Python框架

作者:俊欣来源:关于数据分析与可视化最近Python圈子当中出来一个非常火爆的框架PyScript,该框架可以在浏览器中运行Python程序,只需要在HTML程序中添加一些Python代码即可实现。该...

10个用于Web开发的最好 Python 框架

Python是一门动态、面向对象语言。其最初就是作为一门面向对象语言设计的,并且在后期又加入了一些更高级的特性。除了语言本身的设计目的之外,Python标准库也是值得大家称赞的,Python甚至还...

使用 Python 将 Google 表格变成您自己的数据库

图片来自Shutterstock,获得FrankAndrade的许可您知道Google表格可以用作轻量级数据库吗?GoogleSheets是一个基于云的电子表格应用程序,可以像大多数数据库管...

牛掰!用Python处理Excel的14个常用操作总结!

自从学了Python后就逼迫用Python来处理Excel,所有操作用Python实现。目的是巩固Python,与增强数据处理能力。这也是我写这篇文章的初衷。废话不说了,直接进入正题。数据是网上找到的...

将python打包成exe的方式(将python文件打包成exe可运行文件)

客户端应用程序往往需要运行Python脚本,这对于那些不熟悉Python语言的用户来说可能会带来一定的困扰。幸运的是,Python拥有一些第三方模块,可以将这些脚本转换成可执行的.exe...

对比Excel学Python第1练:既有Excel,何用Python?

背景之前发的文章开头都是“Python数据分析……”,使得很多伙伴以为我是专门分享Python的,但我的本意并非如此,我的重点还是会放到“数据分析”上,毕竟,Python只是一种工具而已。现在网上可以...

高效办公:Python处理excel文件,摆脱无效办公

一、Python处理excel文件1.两个头文件importxlrdimportxlwt其中xlrd模块实现对excel文件内容读取,xlwt模块实现对excel文件的写入。2.读取exce...

取消回复欢迎 发表评论: