python数据分析:介绍pandas库的数据类型Series和DataFrame
off999 2025-04-29 03:26 23 浏览 0 评论
安装pandas
pip install pandas -i https://mirrors.aliyun.com/pypi/simple/
使用pandas
直接导入即可 import pandas as pd
pandas的数据结构
pandas提供了两种主要的数据结构:Series 和 DataFrame,类似于python提供list列表,dict字典,tuple元组等数据类型用于存储数据。
1. Series
Series 是一种一维的数组(类似于 Python 的列表),可以存储任何数据类型(整数、字符串、浮点数、Python对象等)。Series 是一种带有标签的数据结构,每个数据点都有一个索引。
创建 Series
创建的series结构,默认索引从0开始(像list的索引一样),但是可以指定索引。
1)从列表创建Series
import pandas as pd
data = [1, 2, 3, 4, 5]
s = pd.Series(data)
print(s)2)从字典创建 Series,键作为索引
import pandas as pd
data_dict = {'a': 1, 'b': 2, 'c': 3}
s = pd.Series(data_dict)
print(s)3)指定索引创建Series
import pandas as pd
data = [1, 2, 3, 4, 5]
s = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])
print(s)Series的基本属性
- values:返回 Series 中的数据值。
- index:返回 Series 中的索引。
- dtype:返回 Series 中数据的数据类型。
- name:返回或设置 Series 的名称。
举例:定义一个series接口数据并指定索引和名称
data = [[1, 2, 3], [4, 5,6]]
s = pd.Series(data, name='一维数组',index=['a', 'b'])
print(f'值:{s.values}')
print(f'索引:{s.index}')
print(f'数据类型 {s.dtype}')
print(f'名称 {s.name}')Series的函数
1)value_counts函数:对Series对象进行计数
- normalize:默认为False。设置为True,则函数返回每个值占总数的比例,而不是计数。
- sort:是否对结果进行排序。
- ascending:默认为False,计数结果按降序排列;设置为True,则按升序对计数进行排序。
- dropna:默认为True,表示从计数中排除NaN值。设置为False,则包含NaN值的计数也会被纳入统计。
- bins:整数、字符串或序列。如果给定,则返回的Series将包含给定数量的bin(箱)的计数。这个参数主要用于数值型数据的分箱处理,我们通常使用cut()函数进行分箱。
举例:
1)定义Series数据,计数后按照升序排列:
data_list = ['A', 'C', 'B', 'A', 'A', 'C', 'B', 'C','C']
se = pd.Series(data_list)
print(se.value_counts(ascending=True))结果:
B 2
A 3
C 4
Name: count, dtype: int64
2)对数值型Series对象进行分箱后统计计数
data_list = [1, 2,3,4,3,2,1,2,4,5,7,8,4,3,15,10]
se = pd.Series(data_list)
#bins=3 自动分了三个数据范围
print(se.value_counts(ascending=True,bins=3))结果:
(10.333, 15.0] 1
(5.667, 10.333] 3
(0.985, 5.667] 12
Name: count, dtype: int64
3)使用pandas.cut()函数进行分箱处理
data_list = [1, 2,3,4,3,2,1,2,4,5,7,8,4,3,15,10]
# 指定箱子的边界
bins = [0, 2, 4, 6, 8]
labels = ['0-2', '2-4', '4-6', '6-8']
cut_data = pd.cut(data_list, bins=bins, labels=labels)
# 使用value_counts()函数对分箱后的数据进行计数
counts = cut_data.value_counts()
# 打印结果
print(counts)结果:
0-2 5
2-4 6
4-6 1
6-8 2
Name: count, dtype: int64
2. DataFrame
DataFrame 是一个二维的表格数据结构,具有标记的轴(行和列)。其中每一列相当于一个Series。
创建 DataFrame
和Series结构一样默认索引从0开始,当然也可以指定索引。
1)从字典创建 DataFrame,字典的键是列名
import pandas as pd
data_dict = {
'name': ['lilei', 'lili', 'wanglei'],
'age': [25, 30, 35],
'city': ['shanghai', 'shenzhen', 'nanjing']}
df = pd.DataFrame(data_dict)
print(df)2)从列表的列表创建DataFrame
data = [
['lilei', 25],
['lili', 30],
['wanglei', 35]
]
df = pd.DataFrame(data, columns=['Name', 'Age'])
print(df)3)从Numpy 数组创建DataFrame并指定列名和索引
import numpy as np
data = np.array([[1, 2], [3, 4], [5, 6]])
df = pd.DataFrame(data, columns=['A', 'B'],index=['a','b','c'])
print(df)Series和DataFrame数据的常用函数和功能
head(n):返回前 n 个元素,默认返回前5个
tail(n):返回后 n 个元素,默认返回后5个。
unique():返回 Series 中的唯一值(去掉重复的值)。
isnull():返回一个布尔 Series,指示每个值是否为 NaN。
dropna():删除所有 NaN值(numpy.nan)或者None值,返回一个新的数据
举例:定义一个series结构数据,打印下上面方法获取的数据
data = [1, 2, 3, 4, 5,[6,7],[8],None,{'a':10}]
s = pd.Series(data)
print(f'前3个元素\n {s.head(3)}')
print(f'后3个元素\n {s.tail(3)}')
print(f'判断是否为null\n {s.isnull()}')举例:定义一个series结构数据,打印删除NaN值后的数据
import numpy as np
data = [1, 2, 3, 4, 5,None,np.nan]
s = pd.Series(data)
new_s =s.dropna()
print(f'删除NaN值\n {new_s}')举例:定义一个series结构数据,打印去重后的数据
data = [1, 2, 3, 4, 5,4,5,6]
s = pd.Series(data)
print(f'唯一值 {s.unique()}')to_dict函数:将DataFrame数据转换为字典
字典的键和值对应的是列名和列值
举例:读取csv文件内容,并转换为字典
import pandas as pd
dataframe = pd.read_csv("1.csv")
print(dataframe)
#将DataFrame数据格式转换为字典
print(dataframe.to_dict())结果如下:
选择列数据
import pandas as pd
dataframe = pd.read_csv("1.csv")- 选择某一列数据
#选择Nmae这一列
print(dataframe['zx` Name'])
#选择Age这一列
print(dataframe.age)
#通过Ioc函数选择Name这一列
print(dataframe.loc[:,['Name']])返回的某一列的数据类型是一个Series类型,对某列数据可以做循环打印该列的值。
for i in dataframe.Name:
print(i)- 选择多列
#选择Nmae,age这两列
print(dataframe[['Name','age']])
#通过loc()函数选择Name和age两列
print(dataframe.loc[:,['Name','age']])选择行数据
使用方式类似于list的切片操作
#取前3行数据
print(dataframe[0:3])
#取倒数第4行和第5行
print(dataframe[-4:-2])
#取前10行中每2行取1个
print(dataframe[0:10:2]) 通过iIoc函数获取多行数据
#取前10行数据
print(dataframe.iloc[:10,:]) 选择指定的行和列数据
通过Ioc函数取某些行和列数据
print(dataframe.loc[0:3,['Name']])
print(dataframe.loc[0:3,['Name','age']])按条件选择
举例:筛选age列大于25的数据
print(dataframe[dataframe.age > 25])举例:筛选性别为男的数据
print(dataframe[dataframe.sex == 'man'])举例: 筛选索引等于0的数据
print(dataframe[dataframe.index == 0])举例:筛选性别为男并age大于25的数据
print(dataframe[(dataframe.sex == 'man') & (dataframe.age > 25)])举例:筛选年龄大于25的Name这一列的数据
print(dataframe[dataframe.age > 25].loc[:,['Name']])sort_values函数:使用该函数进行排序
参数介绍
- by:传入单个字符串或字符串列表(1个或者多个列名),表示按照列名进行排序。
- axis:默认为0。0表示按列的值排序,1表示按行的值排序;一般不使用
- ascending:布尔值或布尔值列表,默认为True。True表示升序排序,False表示降序排序。如果是一个列表,则列表中的每个元素对应by参数中每个列的排序顺序。
- inplace:布尔值,默认为False。如果为True,则直接修改原DataFrame并返回None;如果为False,则返回一个新的排序后的DataFrame副本。
- kind:排序算法的选择,默认为'quicksort'。其他选项包括'mergesort'和'heapsort'。对于大数据集,'quicksort'通常是最快的,但不一定是最稳定的。
- na_position:{'first', 'last'},默认为'last'。表示缺失值(NaN)应该被放在排序后的数组的开始还是结束。
- ignore_index:布尔值,默认为False。如果为True,则结果DataFrame的索引将被重置为默认的整数索引。
测试代码:
1)按列排序(升序)
print(dataframe.sort_values(by='Name'))
print(dataframe.sort_values(by=['Name','age']))
2)按列排序(倒序)
print(dataframe.sort_values(by='age',ascending=False))3)不同列排列顺序不同(比如第一列正序,第二列倒序)
print(dataframe.sort_values(by=['Name','age'],ascending=[True,False]))insert函数:插入列数据
插入某一列数据,参数介绍:
- loc: 传入整数,代表插入在第几列(0代表第1列)
- column:列名
- value:每列的值(单个值表示每一行值相同;传入列表,列表中的元素对应每一行的值)
- allow_duplicates:为True表示允许列名重复,否则不允许
测试代码:
#对DataFrame对象插入数据
dataframe.insert(2,'area','China')
dataframe.insert(3,'area',['China','America','korea','japan','China','America','korea','japan'],allow_duplicates=True)
print(dataframe)结果:
groupby函数:分组聚合
支持对一个或多个列的值进行分组,应用聚合函数(如求和、平均值、最大值、最小值等)或其他操作。类似于大家使用sql查询数据库语句时通过group by分组聚合一样。
参数介绍:
- by:指定要根据哪个字段进行分组。可以是一个列名或者包含多个列名的列表。默认值None,表示不分组。
- axis:指定分组的方向。0或index表示按列分组(即沿着行的方向进行分组)。1或columns表示按行分组(即沿着列的方向进行分组)。默认情况下是0,即按列分组。
- level:当DataFrame的索引为多重索引时,level参数指定用于分组的索引级别。可以传入多重索引中索引的下标(如0, 1, ...)或索引名。如果传入多个级别,则使用列表形式。level参数不能与by参数同时使用。
- as_index:指定分组后的结果是否将分组列的值作为索引。如果按单列分组,结果默认是单索引;如果按多列分组,结果默认是多重索引。将as_index设置为False可以重置索引为默认的整数索引(0, 1, ...)。
- sort:指定分组结果是否按照分组列的值进行排序。默认情况下是True,即按升序排列。将sort设置为False则不排序,这可能会提升性能。
- observed:指定是否观察数据的层次结构。在某些情况下,当分组列包含大量唯一值时,设置observed=True可以提高性能,因为它只考虑在数据中出现的值。
- dropna:默认情况下,分组列的NaN值在分组结果中不保留。将dropna设置为False可以保留NaN分组。
函数执行后返回的是DataFrameGrouyBy对象,该对象支持多个聚合函数,类似如下:
- sum():计算分组数据的总和。
- mean():计算分组数据的平均值。
- max():找出分组数据中的最大值。
- min():找出分组数据中的最小值。
- median():计算分组数据的中位数。
- std():计算分组数据的标准差,反映数据的离散程度。
- var():计算分组数据的方差,也是反映数据离散程度的一个指标。
- count():计算分组中非空(非NA/null)值的数量。
- first():返回分组中的第一个值。
- last():返回分组中的最后一个值。
- nth(n):返回分组中的第n个值,n可以是正数也可以是负数,负数表示从末尾开始计数。
- size():返回分组中的元素数量。
- prod():计算分组数据的乘积。
- nunique():计算分组中唯一值的数量。
此外,pandas的agg()函数允许你传入一个函数列表或字典,对分组数据应用多个聚合函数。例如:agg(['sum', 'mean', 'max']) 或者 agg({'某一列': ['sum', 'mean', 'max']})
举例:定义一个DataFrame的数据
import pandas as pd
data_dict = {'group': ['A', 'C', 'B', 'A', 'A', 'C', 'B', 'B', 'C'],
'name': ['lilei', 'lili', 'wanglei', 'wangning', 'wangling', 'wangming', 'wangyu', 'liyi', 'xiaolei'],
'age': [25, 30, 35,21,23,24,25,26,32],
'city': ['shanghai', 'shenzhen', 'nanjing','shanghai', 'shenzhen', 'nanjing','shanghai', 'shenzhen', 'nanjing']}
df = pd.DataFrame(data_dict)1)按照单个group列分组,统计age列的汇总值
print(df.groupby(by='group')['age'].sum())2)按照多个列分组后,统计age列汇总值,最大值,最小值等
#以下两种方式都可以
print(df.groupby(by=['group','city'])['age'].agg(['sum','max','min']))
print(df.groupby(by=['group','city']).agg({'age':['sum','max','min']}))3)按照单个group列分组,统计age列的汇总值并添加为新的一列数据
我们可以使用transform函数对每个组应用一个聚合函数,该函数将返回与原始DataFrame形状相同的对象
#聚合后添加sum列
df['sum'] = df.groupby(by='group')['age'].transform('sum')
print(df)4)按照单个group列分组,统计age列的汇总值,并使用filter函数过滤某些数据
# 只保留'age'列总和大于80的组
filtered = df.groupby(by='group').filter(lambda x: (x['age'].sum() > 80))
print(filtered)共勉: 东汉·班固《汉书·枚乘传》:“泰山之管穿石,单极之绠断干。水非石之钻,索非木之锯,渐靡使之然也。”
-----指水滴不断地滴,可以滴穿石头;
-----比喻坚持不懈,集细微的力量也能成就难能的功劳。
----感谢读者的阅读和学习,谢谢大家。
相关推荐
- win7x86是32位还是64位
-
32位win7x86是32位操作系统,win7x64是64位操作系统。扩展资料Windows7,中文名称视窗7,是由微软公司(Microsoft)开发的操作系统,内核版本号为WindowsNT...
- 用我告诉你安装win7(安装win7教程)
-
方法一:使用工具在线一键下载安装win7(win7正式版只需使用正版密钥激活即可)1、在电脑安装好小白一键重装系统工具打开,选择原版win7旗舰版系统,点击安装此系统。2、等待软件自动下载系统镜像文件...
- sd卡如何修复(如何修复sd卡视频教程)
-
修复SD卡的三个步骤如下:1.使用磁盘检测工具检查SD卡的错误:您可以使用Windows操作系统中自带的磁盘检查工具或第三方软件来检查并修复SD卡中的错误。2.格式化SD卡:如果检查后发现错误无法...
- 安卓手机杀毒软件哪个最好用
-
腾讯手机管家的守护老人安全功能版本我在用,我来说说吧。此版本是专门为守护老人安全设计推出的,不但有效拦截诈骗短信,电话,木马病毒,钓鱼网址,辟谣功能可以帮助老人立即分辨养生讯息,银行卡故障讯息,保险异...
- xp3用什么模拟器打开(xp3用什么模拟器打开好)
-
可以按照以下的步骤排查解决:首先,游戏必须要使kirikiri引擎,这点可以从文件中是否含有部分xp3后缀的文件来判断然后用模拟器打开date.xp3就行了,部分汉化游戏是直接打开exe程序如果遇到d...
- 固态硬盘用mbr还是guid(固态硬盘guid好还是mbr好)
-
如果电脑原装系统是win8或者以上的,那么硬盘分区表格式为GUID(GPT)格式的;如果是win7以下的,那么一般就是MBR的。主引导记录(MBR)是计算机开机后访问硬盘时所必须要读取的首个扇区,由分...
- 为什么fps大神都是400dpi(fps为什么高)
-
400DPI,在游戏里调节不同英雄的鼠标灵敏度,可以保证最小范围微调改动鼠标移动速度。因为DPI和灵敏度是乘积关系。举个例子:如果你玩麦克雷时鼠标DPI是3200,游戏内灵敏度是1。但你切换到源氏和闪...
- 系统集成项目管理工程师难考吗
-
系统集成项目管理工程师考试的普遍通过率是在10%左右,但是并不表示考试真的有那么难。因为考试本身没有报考条件的限制,且考试报名费用很低,很多人都不重视考试。所以通过率普遍偏低,只要你认真备考,有一...
- 360影视大全下载2025免费版(下载360影视大全最新版下载安装到手机版)
-
你好朋友360影视大全里的很多视频都是免费的,建议安装最新的360影视大全就可以了打开360视频,搜索自己需要的视频,点击360播放器右下角的下载箭头,即可将视频进行下载,下载完毕之后视频会保存在36...
- 360安全卫士手机版下载(360安全卫士官方免费下载手机版5.5.0)
-
相当靠谱360手机卫士是一款由奇虎网推出的功能强、效果好、受用户欢迎的上网安全软件。360安全卫士拥有查杀木马、清理插件、修复漏洞、电脑体检、保护隐私等多种功能,并独创了“木马防火墙”“360密盘”等...
- deepin和统信uos(统信和deepin的区别)
-
差不多。1Deepin原名LinuxDeepin、deepinos、深度操作系统,于2014年4月改名Deepin。deepin团队基于Qt/C++(用于前端)和Go(用于后端)开发了的全新深度桌...
- 三星驱动(三星驱动板)
-
驱动是必须装的,但不需要单独安装驱动。 1、电脑的所有硬件,必然要装驱动,键盘、鼠标什么的,都是有驱动的。驱动是软件和硬件结合的桥梁。但多数普通常见的硬件,驱动是widnows系统自带的,不需要用户...
- u盘启动杀毒软件(u盘杀毒系统)
-
有,但是主要是专杀工具,全面的综合杀毒软件基本上没有,因为没什么用。 1、放在U盘里的杀毒软件,就是不安装,也不监控,只杀毒的软件。 2、目前的杀毒软件的工作机制,主要是监控,监控电脑不感染病...
- 联想维修站点查询官网(联想 维修 服务网点)
-
您可以在联想的官方网站上查询到附近的授权维修服务点,或者拨打联想的客服电话寻求帮助。在维修服务点,您可以享受到专业的维修服务,包括硬件故障、软件问题、系统优化等方面的维护和维修。维修人员将会根据您的电...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
系统u盘安装(win11系统u盘安装)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
