使用python把csv汇总成excel(python csv导出)
off999 2025-04-30 18:49 20 浏览 0 评论
最近领导安排让我每周定时把grafana导出的csv文件进行统计汇总工作,需要处理的csv文件还是蛮多的,况且还要每周重复汇总处理。干脆写个脚本,每周执行一遍脚本,既方便还不会出错。
一、需求分析
1. 原始文件分析
原始文件是多个csv表格,第一列为时间戳,每10分钟统计生成一行,其余列为ip地址在该时间段内的访问次数
2. 处理结果分析
根据要求,统计每个ip地址在当天访问次数求和,汇总生成新表格,结果如下,并将所有csv文件按照文件名,分别汇总到不同的sheet下
二、代码逻辑
1. 流程分析
- 首先遍历指定目录下的.csv文件,提取文件名生成数组
- 然后使用pandas库读取csv文件,提取日期和ip,然后统计每个ip当天访问次数,生成新的DataFrame
- 最后使用xlwings库将pandas处理后的DataFrame数据写入excel文件,指定文件名作为sheet名
2. 遍历指定目录下.csv文件
主要用到了os模块中的walk()函数,可以遍历文件夹下所有的文件名。
def find_csv(path):
"""
查找目录下csv文件
:param path: 查找csv的目录路径
:return: csv文件名list
"""
csv_file = []
for root, dirs, files in os.walk(path):
for file in files:
if os.path.splitext(file)[1] == '.csv':
csv_file.append(os.path.join(root, file))
return csv_file
3. pandas处理csv文件
pandas是python环境下最有名的数据统计包,对于数据挖掘和数据分析,以及数据清洗等工作,用pandas再合适不过了,官方地址:https://www.pypandas.cn/
def summary_data(file):
"""
grafana导出的csv文件处理汇总
:param file: csv文件路径
:return: 处理完成后的pandas对象
"""
# 读取整个csv文件
csv_data = pd.read_csv(file, ';')
# 提取日期
csv_data["Time"] = csv_data["Time"].map(lambda Time: Time[0:10])
date = csv_data["Time"].drop_duplicates()
# 提取IP
ip_list = csv_data.columns.values[1:]
# 生成新列表
result_data = []
for day in list(date):
ip_data = []
for ip in ip_list:
# 统计指定ip地址在指定日期的数据之和
ip_sum = csv_data.loc[csv_data['Time'] == day, ip].sum()
ip_data.append(ip_sum)
# print("日期:%s ip:%s 总计:%s" % (day, ip, ip_sum))
result_data.append(ip_data)
# 生成新的DataFrame
result_df = pd.DataFrame(result_data, index=list(date), columns=ip_list)
# 添加行列统计
result_df['day_sum'] = result_df.apply(lambda x: x.sum(), axis=1)
result_df.loc['ip_sum'] = result_df.apply(lambda x: x.sum())
print(file, "处理完毕!")
return result_df
4. excel数据写入
pandas的to_excel方法也可以写入到excel文件,但是如果需要写入到指定的sheet,就无法满足需求了,此时就需要用的xlwings或者openpyxl库,此处使用xlwings,参考文档:
https://www.xlwings.org/pro
def save_excel(data_df, file_name, excel_name):
"""
生成并写入新excel文件
:param data_df: pandas数据对象
:param file_name: 传入文件名,作为生成的sheet名称
:param excel_name: 生成excel文件名
:return: null
"""
sheet_name = file_name[file_name.rfind('/', 1) + 1:file_name.rfind('.', 1)]
wb = xlwings.Book(excel_name)
sheet = wb.sheets.add(name=sheet_name)
sheet.range("A1").value = data_df
wb.save()
wb.close()
print(sheet_name, "Sheet写入完毕!")
5. 完整代码
import os
import pandas as pd
import xlwings
def find_csv(path):
"""
查找目录下csv文件
:param path: 查找csv的目录路径
:return: csv文件名list
"""
csv_file = []
for root, dirs, files in os.walk(path):
for file in files:
if os.path.splitext(file)[1] == '.csv':
csv_file.append(os.path.join(root, file))
return csv_file
def summary_data(file):
"""
grafana导出的csv文件处理汇总
:param file: csv文件路径
:return: 处理完成后的pandas对象
"""
# 读取整个csv文件
csv_data = pd.read_csv(file, ';')
# 提取日期
csv_data["Time"] = csv_data["Time"].map(lambda Time: Time[0:10])
date = csv_data["Time"].drop_duplicates()
# 提取IP
ip_list = csv_data.columns.values[1:]
# 生成新列表
result_data = []
for day in list(date):
ip_data = []
for ip in ip_list:
ip_sum = csv_data.loc[csv_data['Time'] == day, ip].sum()
ip_data.append(ip_sum)
# print("日期:%s ip:%s 总计:%s" % (day, ip, ip_sum))
result_data.append(ip_data)
result_df = pd.DataFrame(result_data, index=list(date), columns=ip_list)
# 添加行列统计
result_df['day_sum'] = result_df.apply(lambda x: x.sum(), axis=1)
result_df.loc['ip_sum'] = result_df.apply(lambda x: x.sum())
print(file, "处理完毕!")
return result_df
def save_excel(data_df, file_name, excel_name):
"""
生成并写入新excel文件
:param data_df: pandas数据对象
:param file_name: 传入文件名,作为生成的sheet名称
:param excel_name: 生成excel文件名
:return: null
"""
sheet_name = file_name[file_name.rfind('/', 1) + 1:file_name.rfind('.', 1)]
wb = xlwings.Book(excel_name)
sheet = wb.sheets.add(name=sheet_name)
sheet.range("A1").value = data_df
wb.save()
wb.close()
print(sheet_name, "Sheet写入完毕!")
if __name__ == '__main__':
# 原始csv文件存放路径
path = './csv'
# 生成excel文件名
excel_name = 'cm.xlsx'
csv_file = find_csv(path)
# 创建excel文件
new_excel = pd.DataFrame()
new_excel.to_excel(excel_name)
# 处理并写入excel文件
for file in csv_file:
data_df = summary_data(file)
save_excel(data_df, file, excel_name)
# 删除默认Sheet1
wb = xlwings.Book(excel_name)
wb.sheets['Sheet1'].delete()
wb.save()
wb.close()
print("数据汇总完毕,生成文件路径 %s/%s" % (os.getcwd(), excel_name))
https://www.linuxprobe.com/python-csv-excel.html
相关推荐
- pip的使用及配置_pip怎么配置
-
要使用python必须要学会使用pip,pip的全称:packageinstallerforpython,也就是Python包管理工具,主要是对python的第三方库进行安装、更新、卸载等操作,...
- Anaconda下安装pytorch_anaconda下安装tensorflow
-
之前的文章介绍了tensorflow-gpu的安装方法,也介绍了许多基本的工具与使用方法,具体可以看Ubuntu快速安装tensorflow2.4的gpu版本。pytorch也是一个十分流行的机器学...
- Centos 7 64位安装 python3的教程
-
wgethttps://www.python.org/ftp/python/3.10.13/Python-3.10.13.tgz#下载指定版本软件安装包tar-xzfPython-3.10.1...
- 如何安装 pip 管理工具_pip安装详细步骤
-
如何安装pip管理工具方法一:yum方式安装Centos安装python3和python3-devel开发包>#yuminstallgcclibffi-develpy...
- Python入门——从开发环境搭建到hello world
-
一、Python解释器安装1、在windows下步骤1、下载安装包https://www.python.org/downloads/打开后选择【Downloads】->【Windows】小编是一...
- 生产环境中使用的十大 Python 设计模式
-
在软件开发的浩瀚世界中,设计模式如同指引方向的灯塔,为我们构建稳定、高效且易于维护的系统提供了经过验证的解决方案。对于Python开发者而言,理解和掌握这些模式,更是提升代码质量、加速开发进程的关...
- 如何创建和管理Python虚拟环境_python怎么创建虚拟环境
-
在Python开发中,虚拟环境是隔离项目依赖的关键工具。下面介绍创建和管理Python虚拟环境的主流方法。一、内置工具:venv(Python3.3+推荐)venv是Python标准...
- 初学者入门Python的第一步——环境搭建
-
Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的。今天千锋武汉Python培训小编将带领Python零基础的初学者完成入门的第一步——环境搭建...
- 全网最简我的世界Minecraft搭建Python编程环境
-
这篇文章将给大家介绍一种在我的世界minecraft里搭建Python编程开发环境的操作方法。目前看起来应该是全网最简单的方法。搭建完成后,马上就可以利用python代码在我的世界自动创建很多有意思的...
- Python开发中的虚拟环境管理_python3虚拟环境
-
Python开发中,虚拟环境管理帮助隔离项目依赖,避免不同项目之间的依赖冲突。虚拟环境的作用隔离依赖:不同项目可能需要不同版本的库,虚拟环境可以为每个项目创建独立的环境。避免全局污染:全局安装的库可...
- Python内置zipfile模块:操作 ZIP 归档文件详解
-
一、知识导图二、知识讲解(一)zipfile模块概述zipfile模块是Python内置的用于操作ZIP归档文件的模块。它提供了创建、读取、写入、添加及列出ZIP文件的功能。(二)ZipFile类1....
- Python内置模块pydoc :文档生成器和在线帮助系统详解
-
一、引言在Python开发中,良好的文档是提高代码可读性和可维护性的关键。pydoc是Python自带的一个强大的文档生成器和在线帮助系统,它可以根据Python模块自动生成文档,并支持多种输出格式...
- Python sys模块使用教程_python system模块
-
1.知识导图2.sys模块概述2.1模块定义与作用sys模块是Python标准库中的一个内置模块,提供了与Python解释器及其环境交互的接口。它包含了许多与系统相关的变量和函数,可以用来控制P...
- Python Logging 模块完全解读_python logging详解
-
私信我,回复:学习,获取免费学习资源包。Python中的logging模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log信息有内置的层级——调试(deb...
- 软件测试|Python logging模块怎么使用,你会了吗?
-
Pythonlogging模块使用在开发和维护Python应用程序时,日志记录是一项非常重要的任务。Python提供了内置的logging模块,它可以帮助我们方便地记录应用程序的运行时信息、错误和调...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)