百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python编程之神经网络篇(python的神经网络编程)

off999 2025-05-02 12:52 22 浏览 0 评论

#头条创作挑战赛#神经网络发展到今天大致经历了2次兴起和2次衰落,1943年心理学家McCulloch(麦卡洛克)和数学家Pitts(皮茨)参考生物神经系统的工作原理,首次提出建立了MP神经元模型。

其中x1、x2、x3……xn来表示输入,w1、w2……wn表示权重,代表每个信号的重要程度,计算公式为:x1*w1+x2*w2+x3*w3+……+xn*wn,这被称为信号的加权求和,中间的f代表激活函数,它会对计算结果进行处理,只有大于阈值θ的才会被输出,否则不输出(或者输出为0)。神经元的整个计算公式如下

MP模型采用的激活函数是阶跃函数sgn(x)

1958年罗森布拉特基于MP模型提出感知机模型,最早的感知机就是由输入和输出层组成的线性分类器,输入层把信号加权求和传递给输出层,权重初始值是随机给定的,然后计算损失值就是输出结果和标签值之差,再根据损失值反向调整输入权重,重复多次直至模型可以很好拟合数据,实现有效分类,过程如图所示。

当时罗森布拉特演示使用该算法识别出简单图像,引发了全社会关注,美国军方甚至认为神经网络比“原子弹”更重要,大力投入经费研发使得神经网络的发展进入第一次高潮。但随着1969年人工智能泰斗马文·明斯基发文指出单层感知机无法完成异或问题,而多层感知机对计算机算力要求又太高,从而认为深度神经网络的研究没有意义,致使神经网络进入了第一次冰河期。异或问题如下所示,这种问题需要采用非线性方式解决,右图使用椭圆实现分类。

1970年芬兰数学家Seppo Linnainmaa提出反向传播算法,但当时没有引起人们足够的重视,1983年物理学家John Hopfield利用神经网络,在求解旅行商问题上获得了当时最好成绩,引起了轰动。但是20世纪90年代支持向量机的诞生又一次让神经网络陷入低谷,因为支持向量机可以把二维数据映射到高维从而简单完成非线性分类,并且没有增加计算复杂度,而且还支持小样本数据的回归和分类,相比较而言神经网络的可解释性较差,经常被称为黑盒子(人们很难说清楚每一个隐藏层的功能,所以使用的时候很担心)并且需要非常大量的数据,需要高性能的计算机。神经网络工作过程如下图所示。

Image Net是世界级计算机视觉领域挑战赛,比赛任务之一是对1000类图片分类。2010年冠军队使用支持向量机和手工操作相结合,错误率为28.2%,2012年多伦多大学首先使用深度神经网络使错误率降至15.3%,使用的神经网络仅由五个卷积层和三个全连接层组成,再一次把神经网络的研究推向高潮。之后每年的比赛都是神经网络的较量赛,2016年冠军团队使用了500多个卷积层,至此之后人们开始使用更多的隐藏层和神经元来解决问题。如今,据说微软使用了152层神经网络,拥有数千万级的神经元。

2011年IBM的超级计算机“沃森”打败人类选手夺得100万美元奖金。2016年谷歌的AlphaGo接连打败世界围棋冠军李世石和柯洁,它就是使用了神经网络算法。现在神经网络算法的使用已经非常广泛了,但人们依旧不知道黑盒子中的秘密,谷歌曾有一位工程师导出了AlphaGo的运行数据,想要研究一下它下围棋的秘诀,从而传授给学围棋的儿子,但研究了很久他也无法看懂隐藏层的调参过程。

下面就以建立单神经元模型求解直线方程为例来讲解。

根据我们的经验可以得到该方程应该是线性的:y=w*x+b,w为斜率,b为偏置项。

#导入要使用的第三方库
import tensorflow as tf                      #导入tensorflow库
import numpy as np                         #导入numpy库
import matplotlib.pyplot as plt        #导入绘图库

#生成数据
X=np.linspace(-1,1,100)        #使用numpy的linspace函数生成等差数列,-1到1之间的100个数    
y=2*X+1+np.random.randn(*X.shape)*0.4  #生成每个X对应的y值,y=2*x+1
#np.random.randn是生成一组服从标准正态分布的随机样本值,这里是加入噪音
plt.scatter(X,y)                      #绘制生成的数据散点图

def model(x,w,b):                   #建立模型,计算x*w+b,返回计算结果
    return tf.multiply(x,w)+b   #tf.multiply函数是把x和w对应位置的元素相乘

def loss(x,y,w,b):                            #定义损失函数,求均方差
    error=model(x,w,b)-y                #计算模型预测值和真实值的差
    squard=tf.square(error)            #求差值的平方,tf.square函数是对每一个参数求平方
    return tf.reduce_mean(squard)  #tf.reduce_mean计算参数某一维度的平均值,这里没有写维度

def grad(x,y,w,b):                              #定义梯度函数,计算x,y在w,b上的梯度
    with tf.GradientTape() as tape:     #tf.GradientTape封装了求导的计算
        loss_=loss(x,y,w,b)                    #调用损失函数计算均方差
    return tape.gradient(loss_,[w,b])  #对均方差在[w,b]上求导,返回梯度向量

w=tf.Variable(np.random.randn(),tf.float32)  #tf.Variable是声明变量,可以保存和更新参数
#构建变量w表示线性函数的斜率,初始值为随机生成的服从正态分布的数值
b=tf.Variable(0.0,tf.float32)                            #构建变量b表示线性函数的截距,初始值为0
p=8                                                                #训练的轮数,迭代次数
learn_rate=0.01                                             #学习率

for e in range(p):                                          #重复训练p次             
    for xx,yy in zip(X,y):                                  #每次从X和y中逐一取出[xx,yy]数据
        w_,b_=grad(xx,yy,w,b)                          #计算当前数据[xx,yy]在[w,b]上的梯度向量
        c_w=w_*learn_rate                               #梯度向量w*学习率=需要调整的w
        c_b=b_*learn_rate                                #梯度向量b*学习率=需要调整的b
        w.assign_sub(c_w)                                #w减去需要调整的w得到新的w
        b.assign_sub(c_b)                                 #b减去需要调整的b得到新的b
    plt.plot(X,w.numpy()*X+b.numpy())        #每一轮结束绘制一条拟合数据的直线
plt.show() 

8轮迭代训练之后,模型基本稳定,画出的直线方程差异越来越小,最大化拟合了现有数据。

相关推荐

pip的使用及配置_pip怎么配置

要使用python必须要学会使用pip,pip的全称:packageinstallerforpython,也就是Python包管理工具,主要是对python的第三方库进行安装、更新、卸载等操作,...

Anaconda下安装pytorch_anaconda下安装tensorflow

之前的文章介绍了tensorflow-gpu的安装方法,也介绍了许多基本的工具与使用方法,具体可以看Ubuntu快速安装tensorflow2.4的gpu版本。pytorch也是一个十分流行的机器学...

Centos 7 64位安装 python3的教程

wgethttps://www.python.org/ftp/python/3.10.13/Python-3.10.13.tgz#下载指定版本软件安装包tar-xzfPython-3.10.1...

如何安装 pip 管理工具_pip安装详细步骤

如何安装pip管理工具方法一:yum方式安装Centos安装python3和python3-devel开发包>#yuminstallgcclibffi-develpy...

Python入门——从开发环境搭建到hello world

一、Python解释器安装1、在windows下步骤1、下载安装包https://www.python.org/downloads/打开后选择【Downloads】->【Windows】小编是一...

生产环境中使用的十大 Python 设计模式

在软件开发的浩瀚世界中,设计模式如同指引方向的灯塔,为我们构建稳定、高效且易于维护的系统提供了经过验证的解决方案。对于Python开发者而言,理解和掌握这些模式,更是提升代码质量、加速开发进程的关...

如何创建和管理Python虚拟环境_python怎么创建虚拟环境

在Python开发中,虚拟环境是隔离项目依赖的关键工具。下面介绍创建和管理Python虚拟环境的主流方法。一、内置工具:venv(Python3.3+推荐)venv是Python标准...

初学者入门Python的第一步——环境搭建

Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的。今天千锋武汉Python培训小编将带领Python零基础的初学者完成入门的第一步——环境搭建...

全网最简我的世界Minecraft搭建Python编程环境

这篇文章将给大家介绍一种在我的世界minecraft里搭建Python编程开发环境的操作方法。目前看起来应该是全网最简单的方法。搭建完成后,马上就可以利用python代码在我的世界自动创建很多有意思的...

Python开发中的虚拟环境管理_python3虚拟环境

Python开发中,虚拟环境管理帮助隔离项目依赖,避免不同项目之间的依赖冲突。虚拟环境的作用隔离依赖:不同项目可能需要不同版本的库,虚拟环境可以为每个项目创建独立的环境。避免全局污染:全局安装的库可...

Python内置zipfile模块:操作 ZIP 归档文件详解

一、知识导图二、知识讲解(一)zipfile模块概述zipfile模块是Python内置的用于操作ZIP归档文件的模块。它提供了创建、读取、写入、添加及列出ZIP文件的功能。(二)ZipFile类1....

Python内置模块pydoc :文档生成器和在线帮助系统详解

一、引言在Python开发中,良好的文档是提高代码可读性和可维护性的关键。pydoc是Python自带的一个强大的文档生成器和在线帮助系统,它可以根据Python模块自动生成文档,并支持多种输出格式...

Python sys模块使用教程_python system模块

1.知识导图2.sys模块概述2.1模块定义与作用sys模块是Python标准库中的一个内置模块,提供了与Python解释器及其环境交互的接口。它包含了许多与系统相关的变量和函数,可以用来控制P...

Python Logging 模块完全解读_python logging详解

私信我,回复:学习,获取免费学习资源包。Python中的logging模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log信息有内置的层级——调试(deb...

软件测试|Python logging模块怎么使用,你会了吗?

Pythonlogging模块使用在开发和维护Python应用程序时,日志记录是一项非常重要的任务。Python提供了内置的logging模块,它可以帮助我们方便地记录应用程序的运行时信息、错误和调...

取消回复欢迎 发表评论: