百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python计算机视觉编程 第一章 基本的图像操作和处理

off999 2025-05-05 18:07 11 浏览 0 评论

以下是使用Python进行基本图像操作和处理的示例代码:

  1. 使用PIL库加载图像:
from PIL import Image

image = Image.open("image.jpg")
  1. 转换图像格式:
image.save("new_image.png")
  1. 创建缩略图:
thumbnail = image.thumbnail((100, 100))
thumbnail.save("thumbnail.jpg")
  1. 复制和粘贴图像区域:
# 创建一个新的图像副本
copy_image = image.copy()

# 粘贴图像区域
region = (100, 100, 200, 200)  # 定义区域的左上角和右下角坐标
paste_image = Image.new("RGB", (100, 100))
paste_image.paste(image.crop(region), (0, 0))

paste_image.save("paste_image.jpg")
  1. 调整尺寸和旋转:
# 调整尺寸
resized_image = image.resize((500, 500))
resized_image.save("resized_image.jpg")

# 旋转图像
rotated_image = image.rotate(90)
rotated_image.save("rotated_image.jpg")

这些示例代码演示了一些基本的图像操作和处理技术,使用PIL库可以方便地进行图像处理和编辑。请注意,以上示例代码仅供参考,具体的操作和处理取决于您的需求和图像的特点。

以下是使用Python计算机视觉编程库matplotlib进行图像绘制、点和线绘制、图像轮廓和直方图绘制以及交互式标注的示例代码:

  1. 绘制图像:
import matplotlib.pyplot as plt
import cv2

# 读取图像
image = cv2.imread('image.jpg')

# 将BGR图像转换为RGB图像
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# 绘制图像
plt.imshow(image_rgb)
plt.axis('off')  # 关闭坐标轴显示
plt.show()
  1. 绘制点和线:
import matplotlib.pyplot as plt

# 定义点和线的坐标
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

# 绘制点和线
plt.plot(x, y, marker='o', linestyle='-', color='blue')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.title('点和线示例')
plt.grid(True)
plt.show()
  1. 绘制图像轮廓:
import matplotlib.pyplot as plt
import cv2

# 读取图像
image = cv2.imread('image.jpg')

# 将图像转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 提取图像轮廓
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 绘制图像轮廓
plt.imshow(cv2.drawContours(image.copy(), contours, -1, (0, 255, 0), 2))
plt.axis('off')
plt.show()
  1. 绘制直方图:
import matplotlib.pyplot as plt
import cv2

# 读取图像
image = cv2.imread('image.jpg')

# 将图像转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 计算直方图
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])

# 绘制直方图
plt.plot(hist, color='black')
plt.xlabel('灰度级别')
plt.ylabel('像素数')
plt.title('灰度直方图')
plt.show()
  1. 交互式标注:
import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

# 创建图像对象
fig, ax = plt.subplots()

# 绘制点和线
ax.plot(x, y, marker='o', linestyle='-', color='blue')

# 添加文本标注
for i, j in zip(x, y):
    ax.annotate(f'({i}, {j})', xy=(i, j), xytext=(i+0.1, j+0.5))

# 设置坐标轴标签和标题
ax.set_xlabel('X轴')
ax.set_ylabel('Y轴')
ax.set_title('点和线示例')

plt.show()

这些示例可以帮助你开始使用matplotlib进行图像绘制、点和线绘制、图像轮廓和直方图绘制,以及交互式标注。你可以根据自己的需求进行修改和扩展。

下面是一个使用Python进行计算机视觉编程的示例,包括使用NumPy库进行图像数组表示、灰度变换、图像缩放、直方图均衡化、图像平均、主成分分析(PCA)以及使用pickle模块保存图像。

首先,我们需要导入所需的库和模块:

import numpy as np
import cv2
from sklearn.decomposition import PCA
import pickle
  1. 图像数组表示:
# 读取图像
image = cv2.imread('image.jpg')

# 将图像转换为NumPy数组
image_array = np.array(image)
  1. 灰度变换:
# 将彩色图像转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  1. 图像缩放:
# 缩放图像到指定尺寸
resized_image = cv2.resize(image, (new_width, new_height))
  1. 直方图均衡化:
# 将灰度图像进行直方图均衡化
equalized_image = cv2.equalizeHist(gray_image)
  1. 图像平均:
# 读取多张图像
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')

# 计算图像平均
average_image = np.mean([image1, image2], axis=0).astype(np.uint8)
  1. 图像的主成分分析(PCA):
# 将图像转换为一维向量
flatten_image = image_array.flatten()

# 进行主成分分析
pca = PCA(n_components=2)
pca_result = pca.fit_transform(flatten_image)
  1. 使用pickle模块保存图像:
# 保存图像到文件
with open('image.pickle', 'wb') as f:
    pickle.dump(image, f)

请注意,以上只是一些示例代码,实际应用中可能需要根据具体需求进行适当的调整和扩展。

相关推荐

python入门到脱坑经典案例—清空列表

在Python中,清空列表是一个基础但重要的操作。clear()方法是最直接的方式,但还有其他方法也可以实现相同效果。以下是详细说明:1.使用clear()方法(Python3.3+推荐)...

python中元组,列表,字典,集合删除项目方式的归纳

九三,君子终日乾乾,夕惕若,厉无咎。在使用python过程中会经常遇到这四种集合数据类型,今天就对这四种集合数据类型中删除项目的操作做个总结性的归纳。列表(List)是一种有序和可更改的集合。允许重复...

Linux 下海量文件删除方法效率对比,最慢的竟然是 rm

Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...

数据结构与算法——链式存储(链表)的插入及删除,

持续分享嵌入式技术,操作系统,算法,c语言/python等,欢迎小友关注支持上篇文章我们讲述了链表的基本概念及一些查找遍历的方法,本篇我们主要将一下链表的插入删除操作,以及采用堆栈方式如何创建链表。链...

Python自动化:openpyxl写入数据,插入删除行列等基础操作

importopenpyxlwb=openpyxl.load_workbook("example1.xlsx")sh=wb['Sheet1']写入数据#...

在Linux下软件的安装与卸载(linux里的程序的安装与卸载命令)

通过apt安装/协助软件apt是AdvancedPackagingTool,是Linux下的一款安装包管理工具可以在终端中方便的安装/卸载/更新软件包命令使用格式:安装软件:sudoapt...

Python 批量卸载关联包 pip-autoremove

pip工具在安装扩展包的时候会自动安装依赖的关联包,但是卸载时只删除单个包,无法卸载关联的包。pip-autoremove就是为了解决卸载关联包的问题。安装方法通过下面的命令安装:pipinsta...

用Python在Word文档中插入和删除文本框

在当今自动化办公需求日益增长的背景下,通过编程手段动态管理Word文档中的文本框元素已成为提升工作效率的关键技术路径。文本框作为文档排版中灵活的内容容器,既能承载多模态信息(如文字、图像),又可实现独...

Python 从列表中删除值的多种实用方法详解

#Python从列表中删除值的多种实用方法详解在Python编程中,列表(List)是一种常用的数据结构,具有动态可变的特性。当我们需要从列表中删除元素时,根据不同的场景(如按值删除、按索引删除、...

Python 中的前缀删除操作全指南(python删除前导0)

1.字符串前缀删除1.1使用内置方法Python提供了几种内置方法来处理字符串前缀的删除:#1.使用removeprefix()方法(Python3.9+)text="...

每天学点Python知识:如何删除空白

在Python中,删除空白可以分为几种不同的情况,常见的是针对字符串或列表中空白字符的处理。一、删除字符串中的空白1.删除字符串两端的空白(空格、\t、\n等)使用.strip()方法:s...

Linux系统自带Python2&yum的卸载及重装

写在前面事情的起因是我昨天在测试Linux安装Python3的shell脚本时,需要卸载Python3重新安装一遍。但是通过如下命令卸载python3时,少写了个3,不小心将系统自带的python2也...

如何使用Python将多个excel文件数据快速汇总?

在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...

【第三弹】用Python实现Excel的vlookup功能

今天继续用pandas实现Excel的vlookup功能,假设我们的2个表长成这样:我们希望把Sheet2的部门匹在Sheet1的最后一列。话不多说,先上代码:importpandasaspd...

python中pandas读取excel单列及连续多列数据

案例:想获取test.xls中C列、H列以后(当H列后列数未知时)的所有数据。importpandasaspdfile_name=r'D:\test.xls'#表格绝对...

取消回复欢迎 发表评论: