Python除了做爬虫抓数据还能做什么?其实还能监视和衡量网站性能
off999 2025-05-14 15:47 1 浏览 0 评论
借助这份对初学者友好的指南,您可以构建自己的自定义Python脚本来自动测量网站的关键速度和性能指标。
在过去的一个月中,Google宣布了许多通过关键速度和性能指标来衡量用户体验的方法。
巧合的是,我一直在努力编写一个Python脚本,该脚本使用Google PageSpeed Insights(PSI)API一次收集多个页面的指标,而无需为每个单独的URL运行测试。
收到Google的公告后,我认为现在是共享它的绝佳时机,并解释了如何创建对初学者友好的Python脚本。
关于脚本的最好的事情是,一旦建立了基础,就可以提取许多不同的指标,这些指标可以在页面速度测试以及Lighthouse分析中找到。
网络重要指标简介
5月初,Google推出了Core Web Vitals,它是其关键Web Vitals指标的一部分。
这些指标用于提供有关网站上用户体验质量的指导。
Google将其描述为“帮助量化您的网站体验并确定改进机会”的一种方式,进一步强调了它们向关注用户体验的转变。
核心网络生命力是真实的,以用户为中心的指标,用于衡量用户体验的关键方面。加载时间,互动性和稳定性。
除此之外,Google 上周宣布,他们将引入一个新的搜索排名信号,它将这些指标与现有页面体验信号(例如移动设备友好性和HTTPS安全性)结合在一起,以确保它们继续为高质量网站提供服务给用户。
监控性能指标
预计此更新将于2021年推出,Google已确认不需要立即采取行动。
但是,为了帮助我们为这些更改做准备,他们更新了用于测量页面速度的工具,包括PSI,Google Lighthouse和Google Search Console Speed Report。
Pagespeed Insights API从何入手?
Google的PageSpeed Insights是查看网页效果摘要的有用工具,它使用现场数据和实验室数据来生成结果。
这是获得少数URL概述的好方法,因为它是逐页使用的。
但是,如果您在大型站点上工作,并且希望获得大规模的见解,那么该API可以有利于一次分析多个页面,而无需单独插入URL。
用于衡量性能的Python脚本
我创建了以下Python脚本来大规模度量关键性能指标,以节省手动测试每个URL所花费的时间。
该脚本使用Python将请求发送到Google PSI API,以收集和提取在PSI和Lighthouse中显示的指标。
我决定在Google Colab中编写此脚本,因为这是开始编写Python并允许轻松共享的好方法,因此本文将使用Google Colab贯穿整个安装过程。
但是,它也可以在本地运行,对数据的上传和下载进行一些调整。
请务必注意,某些步骤可能需要一些时间才能完成,尤其是当每个URL通过API运行时,为了不使请求过载。
因此,您可以在后台运行脚本,并在完成步骤后返回到脚本。
让我们逐步介绍启动和运行此脚本所需的步骤。
步骤1:安装所需的软件包
在开始编写任何代码之前,我们需要安装一些Python程序包,然后才能使用该脚本。这些使用导入功能很容易安装。
我们需要的软件包是:
- urllib:用于处理,打开,阅读和解析URL。
- json:允许您将JSON文件转换为Python或将Python文件转换为JSON。
- request:一个HTTP库,用于发送各种HTTP请求。
- pandas:主要用于数据分析和处理,我们正在使用它来创建DataFrames。
- time:一个用于处理时间的模块,我们正在使用它在请求之间提供时间间隔。
- 文件:通过Google Colab,您可以上传和下载文件。
- io:用于访问文件的默认接口。
# Import required packages
import json
import requests
import pandas as pd
import urllib
import time
from google.colab import files
import io
第2步:设置API请求
下一步是设置API请求。完整的说明可以在这里找到,但是从本质上讲,该命令将如下所示:
https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url={yourURL}/&strategy=mobile/&key={yourAPIKey}
这将允许您附加URL,策略(台式机或移动设备)和API密钥。
要在Python中使用它,我们将使用urllib请求库urllib.request.urlopen并将其添加到名为result的变量中,以便我们可以存储结果并在脚本中再次使用它们。
# Define URL
url = 'https://www.example.co.uk'
# API request url
result = urllib.request.urlopen('https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url={}/&strategy=mobile'\
.format(url)).read().decode('UTF-8')
print(result)
步骤3:测试API
为了测试API的正确设置以及对测试过程中生成的内容的理解,我使用简单的urllib.request方法通过API运行了一个URL。
完成此操作后,我将结果转换为json文件并下载了它,以便查看结果。
# Convert to json format
result_json = json.loads(result)
print(result_json)
with open('result.json', 'w') as outfile:
json.dump(result_json, outfile)
files.download('result.json')
(请注意,此方法用于在Google Colab中转换和下载JSON文件。)
步骤4:读取JSON档案
JSON文件显示字段数据(存储在loadingExperience下)和实验室数据(可以在lighthouseResult下找到)。
为了提取所需的指标,我们可以利用JSON文件的格式,因为我们能够看到每个部分下面的指标。
第5步:上传CSV并存储为Pandas数据框
下一步是上传我们要通过PSI API运行的URL的CSV文件。您可以通过抓取工具(例如DeepCrawl)生成站点URL的列表。
当我们使用API时,建议您在此处使用较小的URL示例集,尤其是在您拥有大型站点的情况下。
例如,您可以使用访问量最高的页面或产生最大收入的页面。另外,如果您的站点有模板,则非常适合测试其中的模板。
您还可以在此处添加column-header变量,我们将在遍历列表时使用该变量。确保此名称与您上传的CSV文件中的列标题名称匹配:
uploaded = files.upload()
#if your column header is something other than 'url' please define it here
column_header='url'
(请注意,此方法用于在Google Colab中上传CSV文件。)
将其上传后,我们将使用Pandas库将CSV转换为DataFrame,我们可以在以下步骤中进行迭代。
# Get the filename from the upload so we can read it into a CSV.
for key in uploaded.keys():
filename = key
# Read the selected file into a Pandas Dataframe
df = pd.read_csv(io.BytesIO(uploaded[filename]))
df.head()
DataFrame看起来像这样,从零索引开始。
步骤6:将结果保存到响应对象
下一步涉及使用for循环来迭代刚刚通过PSI API创建的URL的DataFrame。
for循环使我们可以遍历上载的列表并为每个项目执行命令。然后,我们可以将结果保存到响应对象中,并将其转换为JSON文件。
response_object = {}
# Iterate through the df
for x in range(0, len(df)):
# Define request parameter
url = df.iloc[x][column_header]
# Make request
pagespeed_results = urllib.request.urlopen('https://www.googleapis.com/pagespeedonline/v5/runPagespeed?url={}&strategy=mobile'.format(url)).read().decode('UTF-8')
# Convert to json format
pagespeed_results_json = json.loads(pagespeed_results)
# Insert returned json response into response_object
response_object[url] = pagespeed_results_json
time.sleep(30)
print(response_object[url])
我们将在此处使用范围内的x,它表示循环中正在运行的URL,以及(0,len)允许循环遍历DataFrame中的所有URL,无论包含多少个URL 。
该响应对象防止通过重写相互循环,你的网址,使我们能够保存数据以备将来使用。
这也是在将其转换为JSON文件之前,将使用列标题变量定义URL请求参数的地方。
我还将此处的睡眠时间设置为30秒,以减少连续进行的API调用次数。
另外,如果您希望更快地提出请求,则可以在URL命令的末尾附加一个API密钥。
缩进在这里也很重要,因为每个步骤都是for循环的一部分,因此必须在命令中缩进它们。
步骤7:创建一个数据框来存储响应
我们还需要创建一个DataFrame来存储我们要从响应对象中提取的指标。
DataFrame是类似于表的数据结构,具有存储数据的列和行。我们只需要为每个指标添加一列并适当地命名它,如下所示:
# Create dataframe to store responses
df_pagespeed_results = pd.DataFrame(columns=
['url',
'Overall_Category',
'Largest_Contentful_Paint',
'First_Input_Delay',
'Cumulative_Layout_Shift',
'First_Contentful_Paint',
'Time_to_Interactive',
'Total_Blocking_Time',
'Speed_Index'])
print(df_pagespeed_results)
出于此脚本的目的,我使用了Core Web Vital指标以及当前Lighthouse版本中使用的其他负载和交互性指标。
这些指标各自具有不同的权重,然后将它们用于总体绩效得分:
- LCP
- FID
- CLS
- FCP
- TTI
- TBT
您可以在上方链接的各个目标网页上找到有关每个指标的更多信息以及如何解释分数的信息。
我还选择包括速度指数和整体类别,这些类别将提供慢速,平均或快速得分。
步骤8:从响应对象中提取指标
保存响应对象后,我们现在可以对其进行过滤并仅提取所需的指标。
在这里,我们将再次使用for循环遍历响应对象文件,并设置一系列列表索引以仅返回特定指标。
为此,我们将从DataFrame中定义列名称,以及为每个URL从中提取每个指标的响应对象的特定类别。
for (url, x) in zip(
response_object.keys(),
range(0, len(response_object))
):
# URLs
df_pagespeed_results.loc[x, 'url'] =\
response_object[url]['lighthouseResult']['finalUrl']
# Overall Category
df_pagespeed_results.loc[x, 'Overall_Category'] =\
response_object[url]['loadingExperience']['overall_category']
# Core Web Vitals
# Largest Contentful Paint
df_pagespeed_results.loc[x, 'Largest_Contentful_Paint'] =\
response_object[url]['lighthouseResult']['audits']['largest-contentful-paint']['displayValue']
# First Input Delay
fid = response_object[url]['loadingExperience']['metrics']['FIRST_INPUT_DELAY_MS']
df_pagespeed_results.loc[x, 'First_Input_Delay'] = fid['percentile']
# Cumulative Layout Shift
df_pagespeed_results.loc[x, 'Cumulative_Layout_Shift'] =\
response_object[url]['lighthouseResult']['audits']['cumulative-layout-shift']['displayValue']
# Additional Loading Metrics
# First Contentful Paint
df_pagespeed_results.loc[x, 'First_Contentful_Paint'] =\
response_object[url]['lighthouseResult']['audits']['first-contentful-paint']['displayValue']
# Additional Interactivity Metrics
# Time to Interactive
df_pagespeed_results.loc[x, 'Time_to_Interactive'] =\
response_object[url]['lighthouseResult']['audits']['interactive']['displayValue']
# Total Blocking Time
df_pagespeed_results.loc[x, 'Total_Blocking_Time'] =\
response_object[url]['lighthouseResult']['audits']['total-blocking-time']['displayValue']
# Speed Index
df_pagespeed_results.loc[x, 'Speed_Index'] =\
response_object[url]['lighthouseResult']['audits']['speed-index']['displayValue']
我已将此脚本设置为提取上面提到的关键指标,因此您可以立即使用它来收集此数据。
但是,可以提取在PSI测试以及Lighthouse分析中都可以找到的许多其他有用指标。
在此JSON文件可用于查看每个指标在列表中的位置。
例如,在从Lighthouse审核中提取指标(例如“互动时间”的显示值)时,将使用以下内容:
df_pagespeed_results.loc[x, 'Time_to_Interactive'] =\
response_object[url]['lighthouseResult']['audits']['interactive']['displayValue']
再一次,重要的是要确保每一个都位于循环中,否则它们将不会包含在迭代中,并且只会为一个URL生成一个结果。
步骤9:将DataFrame转换为CSV文件
最后一步是创建一个摘要文件以收集所有结果,因此我们可以将其转换为易于分析的格式,例如CSV文件。
summary = df_pagespeed_results
df_pagespeed_results.head()
#Download csv file
summary.to_csv('pagespeed_results.csv')
files.download('pagespeed_results.csv')
(请注意,此方法用于在Google Colab中转换和下载CSV文件。)
进一步探索数据
目前,我们导出的所有指标都存储为字符串,这是用于文本和字符的Python数据类型。
由于我们提取的某些指标实际上是数字值,因此您可能希望将字符串转换为数字数据类型,例如整数和浮点数。
整数,也称为int,是整数的数据类型,例如1和10。
浮点数,也称为浮点数,是十进制点数,例如1.0和10.1。
为了将字符串转换为数字,我们需要执行两个步骤,第一步是将's'字符(用于表示秒)替换为空格。
我们通过在每列上使用.str.replace方法来执行此操作。
#Replace the 's' with a blank space so we can turn into numbers
df_pagespeed_results['Largest_Contentful_Paint'] = df_pagespeed_results.Largest_Contentful_Paint.str.replace('s', '')
df_pagespeed_results['First_Contentful_Paint'] = df_pagespeed_results.First_Contentful_Paint.str.replace('s', '')
df_pagespeed_results['Time_to_Interactive'] = df_pagespeed_results.Time_to_Interactive.str.replace('s', '')
df_pagespeed_results['Total_Blocking_Time'] = df_pagespeed_results.Total_Blocking_Time.str.replace('ms', '')
df_pagespeed_results['Speed_Index'] = df_pagespeed_results.Speed_Index.str.replace('s', '')
然后,我们将使用.astype()方法将字符串转换为整数或浮点数:
#Turn strings into intergers or floats
df_pagespeed_results['Largest_Contentful_Paint'] = df_pagespeed_results.Largest_Contentful_Paint.astype(float)
df_pagespeed_results['Cumulative_Layout_Shift'] = df_pagespeed_results.Cumulative_Layout_Shift.astype(int)
df_pagespeed_results['First_Contentful_Paint'] = df_pagespeed_results.First_Contentful_Paint.astype(float)
df_pagespeed_results['Time_to_Interactive'] = df_pagespeed_results.Time_to_Interactive.astype(float)
df_pagespeed_results['Speed_Index'] = df_pagespeed_results.Speed_Index.astype(float)
完成此操作后,您可以使用多种不同的方法进一步评估数据。
例如,您可以使用数据可视化库(例如matplotlib或seaborn)来可视化指标,以及测量指标如何随时间变化并将结果分组为慢速,中速和快速存储桶。
由于我们已经介绍了很多内容,因此我不会在本文中介绍这些内容,但是如果您想了解更多信息,请随时与我们联系。
结论
该脚本最终帮助我测量了一组URL的关键页面速度和性能指标,并可视化了结果以识别需要改进的页面。
它还允许您随时间监视结果并量化已进行的改进。
我还创建了一个脚本来专门测量三个核心Web Vitals的百分比和类别。
我希望这对希望自动化其性能测试并进一步探索PSI API的人有所帮助。
请随时保存此Colab文件的副本,并使用它来帮助测量和监视您的页面速度,或者按照自己的步骤进行操作。您可以在此处访问我在本文中分享的所有代码段。
相关推荐
- 30s带你使用Python打包exe文件,并修改其图标
-
在Python中,我们可以使用PyInstaller或cx_Freeze等工具将Python脚本打包成可执行文件(.exe),并且能够修改生成的.exe文件的图标。使用PyInstaller...
- Python一键打包为windows的exe文件,无需安装python环境即可执行
-
一、为什么要将Python打包为exe?在实际应用中,我们希望Python程序能在没有安装Python环境的电脑上直接运行。将Python代码打包为exe可执行文件,不仅能解决环境依赖问题,还便于程...
- py2exe实现python文件打包为.exe可执行程序(上篇)
-
今天分享的内容为:python程序实现发送、读取邮件来控制电脑的关机与重启(作为py2exe打包成.exe可执行程序的基础文件)一、说明:本文介绍的是使用新浪邮箱作为例子进行讲解,代码实现如下:#c...
- 如何将python程序文件打包生成一个可执行文件(exe文件)
-
在开发Python程序后,有时我们希望将其打包成一个可执行的exe文件,方便在没有Python环境的计算机上运行。下面将详细介绍使用常见工具实现这一目标的方法。安装PyInstaller...
- Python程序打包为EXE的全面指南:从入门到精通
-
引言在Python开发中,将程序打包成可执行文件(EXE)是分发应用程序的重要环节。通过打包,我们可以创建独立的可执行文件,让没有安装Python环境的用户也能运行我们的程序。本篇文章将详细介绍如何使...
- 10个你没有充分利用的令人惊叹的 Python 特性
-
Python的简单性和多功能性使其成为全球开发人员的最爱。每天有超过1000万开发者使用Python进行从网络开发、机器学习到网络脚本等各种开发,Python的功能非常强大。然而,我们中的...
- 编程语言可以用来做什么
-
1.web前端你每天浏览的网页,所看到的页面特效,均是由web前端工程师来实现的2.Java大型购物网站有关通信及网络企业大型企业级应用管理系统大型网游后台数据3.C++嵌入式三维游戏领域人工智能领域...
- 用Python进行机器学习(16)-内容总结
-
对于用Python进行机器学习的内容,到这里就要做一个阶段性总结啦,后续再写的文章就是关于深度学习的了,算是对该部分内容的进阶版。对于机器学习,我们主要介绍了五个方面的内容:第一个就是分类算法,主要包...
- 普通人如何利用python做自媒体赚收益
-
普通人利用Python做自媒体赚收益,最简单的方式是下载某些网站的视频,并利用剪影编辑视频,最后导出发布,每天可以制作个10几条,并设置好定时发布,每天如此坚持下去,一定会有所收获的...
- AI能写什么做什么?这些技能已经颠覆你的认知!
-
在ChatGPT、文心一言等AI工具爆火的今天,人工智能早已不再是科幻电影里的概念,而是实实在在地渗透进我们的生活。**AI到底能写什么?能做什么?它的边界在哪里?**让我们一探究竟!---**1....
- Python 3.14 新特性盘点,更新了些什么?
-
Python3.14.0稳定版将于2025年10月正式发布,目前已进入beta测试阶段。这意味着在往后的几个月里,3.14的新功能已冻结,不再合入新功能(除了修复问题和完善文档)。3...
- 每天一个Python库:sys模块的5个高频用法(建议收藏)
-
很多人学Python,一直卡在“写不了实用脚本”。其实,会用标准库,效率直接翻倍。今天分享的是:sys模块。这个模块虽然基础,但非常实用,下面是我亲测常用的5个功能1.获取命令行参数(自动化脚...
- Python除了做爬虫抓数据还能做什么?其实还能监视和衡量网站性能
-
借助这份对初学者友好的指南,您可以构建自己的自定义Python脚本来自动测量网站的关键速度和性能指标。 在过去的一个月中,Google宣布了许多通过关键速度和性能指标来衡量用户体验的方法。 巧...
- python究竟可以用来做些什么
-
这里就不撰述python的一些像什么“高级语言”之类的比较常规的介绍了,还是老样子,说说一些比较常用的东西吧。python是什么python,一款可编程的开源软件,很多第三方库、框架也是开源的,比如强...
- Python 实现 dubbo 协议接口自动化测试
-
前言python语言也可以实现对dubbo协议的接口进行调用与测试,可以使用python+hessian结合的方式,也可以使用python+telnet结合的方式模拟命令行的模式来实现对...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)