Python 从入门到精通:一个月就够了
off999 2025-05-23 19:17 4 浏览 0 评论
要知道,一个月是一段很长的时间。如果每天坚持用 6-7 小时来做一件事,你会有意想不到的收获。
作为初学者,第一个月的月目标应该是这样的:
- 熟悉基本概念(变量,条件,列表,循环,函数)
- 练习超过 30 个编程问题
- 利用这些概念完成两个项目
- 熟悉至少 2 个框架
- 开始使用集成开发环境(IDE),Github,hosting,services 等
整体计划
现在,我们先将月计划细化成周计划。
第一周:熟悉 Python
要积极探索 Python 的使用方法,尽可能多的完成下面这些任务:
- 第一天:基本概念(4 小时):print,变量,输入,条件语句
- 第二天:基本概念(5 小时):列表,for 循环,while 循环,函数,导入模块
- 第三天:简单编程问题(5 小时):交换两个变量值,将摄氏度转换为华氏温度,求数字中各位数之和,判断某数是否为素数,生成随机数,删除列表中的重复项等等
- 第四天:中级编程问题(6 小时):反转一个字符串(回文检测),计算最大公约数,合并两个有序数组,猜数字游戏,计算年龄等等
- 第五天:数据结构(6 小时):栈,队列,字典,元组,树,链表。
- 第六天:面向对象编程(OOP)(6 小时):对象,类,方法和构造函数,面向对象编程之继承
- 第七天:算法(6 小时):搜索(线性和二分查找)、排序(冒泡排序、选择排序)、递归函数(阶乘、斐波那契数列)、时间复杂度(线性、二次和常量)
别急着安装 Python 环境!
这看起来很矛盾,但是你一定要相信我。我有几个朋友,他们因为语言工具包和 IDE 安装的失败而逐渐失去了学习下去的欲望。因此,我的建议是先使用一些安卓 app 来探索这门语言,比如编程英雄(
https://play.google.com/store/apps/details?id=
com.learnprogramming.codecamp)或者在线代码游乐场 Repl(https://repl.it/)等等。如果你是个技术小白,安装 Python 环境可不是你的首要任务。
第二周:开始软件开发(构建项目)
接下来,让我们朝着软件开发任务进军吧!不妨尝试综合你学到的知识完成一个实际的项目:
- 第一天:熟悉一种 IDE(5 小时): IDE 是你在编写大型项目时的操作环境,所以你需要精通一个 IDE。在软件开发的初期,我建议你在 VS code 中安装 Python 扩展或使用 Jupyter notebook。
- 第二天:Github(6 小时):探索 Github,并创建一个代码仓库。尝试提交(Commit)、查看变更(Diff)和上推(Push)你的代码。另外,还要学习如何利用分支工作,如何合并(merge)不同分支以及如何在一个项目中创建拉取请求(pull request)。
- 第三天:第一个项目——简单计算器(4 小时):熟悉 Tkinter,创建一个简单的计算器
- 第四、五、六天:个人项目(每天 5 小时):选定一个项目并完成它。如果你不知道你该做什么,可以查看下面的清单(https://www.quora.com/what-some-good pythonprojects -for-an- middle - programmer/answer/jhankar - mahbub2)
- 第七天:托管项目(5 小时):学习使用服务器和 hosting 服务来托管你的项目。创建一个 Heroku 设置并部署你构建的应用程序。
为什么要写项目?
如果仅仅按部就班地学习课堂上或视频中的内容,你无法拥有独立思考能力。所以,你必须把你的知识应用到一个项目中。当你努力寻找答案时,你也在慢慢地学会这些知识。
第三周:让自己成为一名程序员
第 3 周的目标是熟悉软件开发的整体过程。你不需要掌握所有的知识,但是你应该知道一些常识,因为它们会影响你的日常工作。
- 第一天:数据库基础(6 小时):基本 SQL 查询(创建表、选择、Where 查询、更新)、SQL 函数(Avg、Max、Count)、关系数据库(规范化)、内连接、外连接等
- 第二天:使用 Python 数据库(5 小时):利用一种数据库框架(SQLite 或 panda),连接到一个数据库,在多个表中创建并插入数据,再从表中读取数据。
- 第三天:API(5 小时):如何调用 API。学习 JSON、微服务(micro-service)以及表现层应用程序转换应用程序接口(Rest API)。
- 第四天:Numpy(4 小时):熟悉 Numpy(https://towardsdatascience.com/lets-talk-about- Numpy -for- datascies-beginners-b8088722309f)并练习前 30 个 Numpy 习题(https://github.com/rougier/numpy- 100/blob/master/100_numpy_excercises.md)
- 第五、六天:作品集网站(一天 5 小时):学习 Django,使用 Django 构建一个作品集网站(https://realpython.com/get- start-with-django -1/),也要了解一下 Flask 框架。
- 第七天:单元测试、日志、调试(5 小时):学习单元测试(PyTest),如何设置和查看日志,以及使用断点调试。
真心话时间(绝密)
如果你非常「疯狂」,并且非常专注,你可以在一个月内完成这些任务。你必须做到:
- 把学习 Python 作为你的全职活动。你需要从早上 8 点开始学习,一直到下午 5 点。在此期间,你可以有一个午休时间和茶歇时间(共 1 小时)。
- 8 点列出你今天要学的东西,然后花一个小时复习和练习你昨天学过的东西。
- 从 9 点到 12 点:开始学习,并进行少量练习。在午饭后,你需要加大练习量,如果你卡在某个问题上,可以在网上搜索解决方案。
- 严格保持每天 4-5 小时的学习时间和 2-3 小时的练习时间(每周最多可以休息一天)。
- 你的朋友可能会认为你疯了。走自己的路,让别人去说吧!
如果你有一份全职工作,或者你是一名学生,完成这些流程可能需要更长的时间。作为一名全日制学生,我花了 8 个月的时间来完成这份清单。现在我是一名高级开发人员。我妻子在美国一家大银行工作。她花了 6 个月才完成本文中提到的任务。所以,不管花多长时间,一定要完成它们。
第四周:认真考虑工作(实习)问题
第 4 周的目标是认真思考如何才能被录用。即使你现在不想找工作,你也可以在探索这条道路的过程中学到很多东西。
- 第一天:准备简历(5 小时):制作一份一页的简历。把你的技能总结放在最上面,必须在写项目的同时附上 Github 链接。
- 第二天:作品集网站(6 小时):写几个博客,将它们添加到你之前开发的作品集网站中。
- 第三天:LinkedIn 简介(4 小时):创建一个 LinkedIn 个人简介,把简历上的所有内容都放到 LinkedIn 上。
- 第四天:面试准备(7 小时):准备一些谷歌常见的面试问题,练习白皮书中的 10 个面试编程问题。在 Glassdoor、Careercup 等网站中查看前人遇到的面试问题。
- 第五天:社交(~小时):走出房门,开始参加聚会、招聘会,与其他开发人员和招聘人员见面。
- 第六天:工作申请(~小时):搜索「Python Job」,查看 LinkedIn Job 和本地求职网站。选择 3 个工作岗位并发送工作申请。为每个工作定制你的简历。在每个工作要求中找出 2 到 3 件你不知道的事情,并在接下来的 3-4 天里学会它们。
- 第七天:在拒绝中学习(~小时):每次你被拒绝的时候,找出两件为了获得这份工作你应该知道的事情,然后花 4-5 天 的时间来掌握它们。这样,每次拒绝都会让你成为更好的开发人员。
为工作做准备
现实情况是,你永远不可能百分之百地为工作做好准备。你所要做的就是精通一两件事,并且熟悉其它的事情,最终通过面试。一旦你开始工作了,你会在工作过程中学到很多。
享受学习的过程
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的开发人员。
如果你能在 28 天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名程序员的正确特征了。
- 上一篇:Python 编程算法级优化
- 下一篇:Python缓存应用场景与实现分析
相关推荐
- python3多进程的大数据处理应用场景示例
-
多进程的大数据处理可以应用于以下场景:大规模数据的分块处理:importmultiprocessingdefprocess_chunk(chunk):#对数据块进行处理操作...
- 值得学习练手的100个Python项目(附代码),真的太实用了
-
Python丰富的开发生态是它的一大优势,各种第三方库、框架和代码,都是前人造好的“轮子”,能够完成很多操作,让你的开发事半功倍。在科技飞速发展的当今时代,Python以其简洁、高效和强大的功能,成...
- python匿名函数lambda的语法特点和应用场景
-
在Python的编程过程中,有时我们会碰到一些很简单的计算,但是感觉专门为这个计算创建个函数又觉得太小题大做,这时就可以用到lambda表达式。lambda是用于创建匿名函数,也就是没有具体名称的函...
- Waitress,一个神奇的python库!
-
基本介绍WaitressWaitress是一个纯Python写的WSGI服务器,适用于开发与部署。它简单易用,能够满足基本的Web服务需求,并且具有较好的性能。特性简单性:易于配置和使用。可靠性:稳定...
- Python 中的三个不寻常的事情 柯里化、海象和 Interning
-
柯里化柯里化是指不是一次性给函数所有参数,而是逐个给出。因此,每次都会创建一个新的函数。让我们看看Python中的快速手动实现defadd_curried(x):definner(y)...
- 带你使用Python在两类场景下自动采集日志数据(附程序)
-
各位同学,大家好。采集日志数据是重要的数据来源。本次课程教大家使用Python技术从Windows和Linux两个环境去自动采集日志数据,轻松应对各类日志采集需求。01Python实时采集本地文件数...
- python多进程的分布式任务调度应用场景及示例
-
多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...
- Python自动化操控术:PyAutoGUI全场景实战指南
-
一、PyAutoGUI核心武器库解析1.1鼠标操控三剑客importpyautogui#绝对坐标移动(闪电速度)pyautogui.moveTo(100,200,duration=0....
- python学习——031编程中需要定义函数的几种场景
-
在编程里,当出现下面几种情形时,定义函数是非常有必要的:代码复用当某段代码在程序里要多次使用时,把它定义成函数,能避免代码重复。这样既让代码更加简洁,也方便维护。比如在一个计算多个数字的平方和的程序中...
- 如何在python中开发桌面应用程序?请看文章
-
常用的工具和框架1.TkinterTkinter是Python的标准GUI库,适合简单的桌面应用。importtkinterastkdefon_button_click():label.co...
- Python多进程与多线程应用场景对比
-
在Python中,多进程(Multiprocessing)和多线程(Multithreading)的选择取决于任务类型(I/O密集型vsCPU密集型)、Python的GIL限制以及并...
- Python 集合的应用场景
-
Python集合的应用场景包括:去重:集合中的元素都是唯一的,可以用于去除列表或其他可迭代对象中的重复项。成员检查:可以快速地判断一个元素是否在集合中,这比在列表或其他可迭代对象中搜索要高效。数学操作...
- Python缓存应用场景与实现分析
-
在Python开发中,缓存是优化性能的重要手段。以下是对缓存应用场景、实现方式及常见问题的系统分析:一、缓存应用场景计算密集型函数结果缓存O示例:递归计算斐波那契数列、复杂数学运算。O优势:避免重...
- Python 从入门到精通:一个月就够了
-
要知道,一个月是一段很长的时间。如果每天坚持用6-7小时来做一件事,你会有意想不到的收获。作为初学者,第一个月的月目标应该是这样的:熟悉基本概念(变量,条件,列表,循环,函数)练习超过30个编...
- Python 编程算法级优化
-
大家好,我是ICodeWR。今天要记录的是Python编程算法级优化相关知识。1空间换时间经典案例1.1预计算加速三角函数importmathimportnumpyasnp#传...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)