百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现

off999 2025-05-28 19:39 33 浏览 0 评论

来源:DeepHub IMBA

本文约1700字,建议阅读6分钟

本文通过一个精简的示例来演示MSET-SPRT方法在Python中的实现过程。



在异常检测领域,尤其针对工业机械、核反应堆和网络安全等复杂系统,传统方法往往难以有效处理高维度且相互关联的数据流。多元状态估计技术(MSET) 与序贯概率比检验(SPRT) 的组合方法在此类场景中展现出显著优势。


MSET-SPRT是一种结合机器学习状态估计与统计假设检验的混合技术框架,通过其高精度和稳健性,被广泛应用于关键任务系统的监控与分析。该方法能够实时识别系统行为的微小偏差,为预防性维护和异常事件预警提供可靠依据。

MSET-SPRT理论基础

多元状态估计技术(MSET)原理

MSET作为一种非参数非线性回归技术,通过历史观测数据构建系统正常状态模型。其核心工作机制包括:

建立包含历史正常系统状态的记忆矩阵,作为参考基准;利用学习到的历史状态间关系计算加权组合,从而估计当前系统的预期状态;通过对比观测值与估计值,计算系统行为偏差,为异常检测提供基础指标。

序贯概率比检验(SPRT)方法

SPRT是一种基于统计推断的序贯假设检验方法,专用于确定系统行为偏差是否具有统计显著性。其主要功能为:

持续评估残差误差(实际观测值与模型估计值之间的差异),并根据预设的统计模型进行假设检验;当检测到的偏差超过统计置信阈值时,系统能够及时发出预警信号,同时控制虚警率在可接受范围内。

MSET-SPRT框架通过上述两种技术的协同作用,为多元数据异常检测提供了准确且高效的解决方案,特别适用于高维度、高相关性的时间序列数据分析。

Python实现MSET-SPRT异常检测

下面通过一个精简的示例来演示MSET-SPRT方法在Python中的实现过程。

导入必要的库

 import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt


生成模拟数据集

构建一个多元正态分布数据集,用于模拟正常运行状态下的系统行为:

# Simulating normal system behavior (3 correlated sensors)

np.random.seed(42)

mean = [50, 75, 100]  # Mean values for three sensors

cov = [[10, 5, 2], [5, 15, 3], [2, 3, 20]]  # Covariance matrix




# Generate 500 normal operation samples

 normal_data = np.random.multivariate_normal(mean, cov, size=500)


实现MSET算法

采用基于加权最近邻的方法实现MSET算法,用于估计系统的预期行为:

class MSET:

    def __init__(self, memory_matrix):

        self.memory_matrix = memory_matrix  # Store normal system states




    def estimate(self, input_vector):

        """

        Estimates the expected state based on historical data.

        Uses nearest neighbors to compute weighted estimation.

        """

        weights = np.exp(-np.linalg.norm(self.memory_matrix - input_vector, axis=1))

        weights /= np.sum(weights)

         return np.dot(weights, self.memory_matrix)


初始化MSET模型,将正常运行数据作为记忆矩阵:

 # Initialize MSET with normal data as memory

 mset_model = MSET(memory_matrix=normal_data)


计算残差

计算实际观测值与MSET估计值之间的残差,作为异常检测的基础:

 # filepath: deephub\5\20250327\article.md

# Simulated test data (normal + some anomalies)

test_data = np.vstack([

    np.random.multivariate_normal(mean, cov, size=450),  # Normal

    np.random.multivariate_normal([70, 50, 130], cov, size=50)  # Anomalies

])




# Compute estimated values

estimated_data = np.array([mset_model.estimate(x) for x in test_data])

# Compute residuals

 residuals = np.linalg.norm(test_data - estimated_data, axis=1)


应用SPRT进行异常检测

基于似然比检验原理实现SPRT算法,用于判定残差是否表示异常状态:

# Define thresholds for SPRT

alpha = 0.05  # False positive rate

beta = 0.05   # False negative rate

mu_0, sigma_0 = np.mean(residuals[:450]), np.std(residuals[:450])  # Normal behavior

mu_1 = mu_0 + 3 * sigma_0  # Anomalous mean shift




# SPRT decision function

def sprt_test(residual):

    """ Sequential Probability Ratio Test for anomaly detection """

    likelihood_ratio = stats.norm(mu_1, sigma_0).pdf(residual) / stats.norm(mu_0, sigma_0).pdf(residual)

    return likelihood_ratio > (1 - beta) / alpha

# Apply SPRT

anomalies = np.array([sprt_test(res) for res in residuals])

# Plot results

plt.figure(figsize=(12, 5))

plt.plot(residuals, label="Residuals", color="blue")

plt.axhline(mu_1, color="red", linestyle="dashed", label="Anomaly Threshold")

plt.scatter(np.where(anomalies)[0], residuals[anomalies], color="red", label="Detected Anomalies", zorder=2)

plt.xlabel("Time")

plt.ylabel("Residual Magnitude")

plt.legend()

plt.title("MSET-SPRT Anomaly Detection")

 plt.show()


结果分析与解释

图中数据可视化结果展示了MSET-SPRT方法的异常检测效果:

蓝色曲线表示系统状态残差时间序列,反映了实际观测值与估计值之间的偏差大小;红色虚线标示出异常检测阈值,该阈值基于正常运行数据的统计特性计算得出;红色标记点则代表被SPRT算法判定为异常的时间点,这些点的残差值显著高于正常波动范围。

分析结果表明,MSET-SPRT方法能够有效区分正常系统波动与异常行为,提供了一种可靠的多元时间序列异常检测方案。该方法特别适用于需要高精度异常检测的工业监控、设备健康管理和网络安全等领域。

相关推荐

Python Flask 容器化应用链路可观测

简介Flask是一个基于Python的轻量级Web应用框架,因其简洁灵活而被称为“微框架”。它提供了Web开发所需的核心功能,如请求处理、路由管理等,但不会强制开发者使用特定的工具或库。...

Python GUI应用开发快速入门(python开发软件教程)

一、GUI开发基础1.主流GUI框架对比表1PythonGUI框架比较框架特点适用场景学习曲线Tkinter内置库,简单小型应用,快速原型平缓PyQt功能强大,商用许可专业级桌面应用陡峭PySi...

【MCP实战】Python构建MCP应用全攻略:从入门到实战!

实战揭秘:Python Toga 打造跨平台 GUI 应用的神奇之旅

在Python的世界里,GUI(图形用户界面)开发工具众多,但要找到一款真正跨平台、易于使用且功能强大的工具并不容易。今天,我们就来深入探讨一下Toga——一款Python原生、操作系统原...

python应用目录规划(python的目录)

Python大型应用目录结构规划(企业级最佳实践)核心原则模块化:按业务功能拆分,高内聚低耦合可扩展性:支持插件机制和动态加载环境隔离:清晰区分开发/测试/生产环境自动化:内置标准化的构建测试部署流...

Python图形化应用开发框架:PyQt开发简介

PyQt概述定义:PyQt是Python绑定Qt框架的工具集,用于开发跨平台GUI应用程序原理:通过Qt的C++库提供底层功能,PyQt使用SIP工具生成Python绑定特点:支持Windows/ma...

[python] 基于PyOD库实现数据异常检测

PyOD是一个全面且易于使用的Python库,专门用于检测多变量数据中的异常点或离群点。异常点是指那些与大多数数据点显著不同的数据,它们可能表示错误、噪声或潜在的有趣现象。无论是处理小规模项目还是大型...

Python、Selenium 和 Allure 进行 UI 自动化测试的简单示例脚本

环境准备确保你已经安装了以下库:SeleniumAllurepytest你可以使用以下命令安装所需库:pipinstallseleniumallure-pytestpytest示例代码下面的代...

LabVIEW 与 Python 融合:打造强大测试系统的利器

在现代测试系统开发领域,LabVIEW和Python各自凭借独特优势占据重要地位。LabVIEW以图形化编程、仪器控制和实时系统开发能力见长;Python则凭借丰富的库资源、简洁语法和强大数...

软件测试进阶之自动化测试——python+appium实例

扼要:1、了解python+appium进行APP的自动化测试实例;2、能根据实例进行实训操作;本课程主要讲述用python+appium对APP进行UI自动化测试的例子。appium支持Androi...

Python openpyxl:读写样式Excel一条龙,测试报表必备!

无论你是测试工程师、数据分析师,还是想批量导出Excel的自动化工作者,只需一个库openpyxl,即可高效搞定Excel的各种需求!为什么选择openpyxl?支持.xlsx格式...

Python + Pytest 测试框架——数据驱动

引言前面已经和大家介绍过Unittest测试框架的数据驱动框架DDT,以及其实现原理。今天和大家分享的是Pytest测试框架的数据驱动,Pytest测试框架的数据驱动是由pytest自...

这款开源测试神器,圆了我玩游戏不用动手的梦想

作者:HelloGitHub-Anthony一天我在公司用手机看游戏直播,同事问我在玩什么游戏?我和他说在看直播,他恍然大悟:原来如此,我还纳闷你玩游戏,咋不用动手呢。。。。一语惊醒梦中人:玩游戏不用...

Python单元测试框架对比(pycharm 单元测试)

一、核心框架对比特性unittest(标准库)pytest(主流第三方)nose2(unittest扩展)doctest(文档测试)安装Python标准库pipinstallpytestp...

利用机器学习,进行人体33个2D姿态检测与评估

前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制...

取消回复欢迎 发表评论: