Python JSON 魔法手册:数据转换的终极艺术
off999 2025-05-30 16:52 8 浏览 0 评论
对话实录
小白:(崩溃)我从 API 拿到了 JSON 数据,怎么变成 Python 对象?
专家:(掏出魔法书)用 json 模块,轻松实现数据转换!
JSON 基础三连击
1. 字符串 <-> Python 对象
import json
# JSON字符串 → Python对象
data = json.loads('{"name": "小明", "age": 18}')
print(data["name"]) # → 小明
# Python对象 → JSON字符串
json_str = json.dumps({"name": "小红", "age": 16})
print(json_str) # → {"name": "小红", "age": 16}
专家提醒:json.loads()的's'代表string!这就好比在数据的 “翻译” 过程中,loads专门负责把JSON格式的字符串 “翻译” 成Python 能识别的对象;与之相对,dumps则把Python对象“翻译”成JSON字符串。
2. 文件 <-> Python 对象
# 读取JSON文件
with open("data.json", encoding="utf-8") as f:
data = json.load(f)
# 写入JSON文件
with open("output.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
在 JSON 文件的处理过程中,json.load与json.dump就像一对默契的搬运工,前者将文件中的JSON 数据搬进Python 程序,后者则把Python对象数据搬运到文件中存储。
3.json数据和python数据类型对照表
json字符串和python数据转换的对照表如下
JSON | Python |
object | dict |
array | list、tuple |
string | unicode、str |
number (int) | int, long |
number (real) | float |
true | True |
false | False |
null | None |
六大实战案例
案例 1:处理 API 响应
import requests
response = requests.get("https://api.example.com/data")
data = response.json() # 直接获取Python对象
print(data["results"][0])
当我们从 API 获取数据时,response.json()就像一把万能钥匙,轻松将 API 返回的 JSON 数据转换成 Python 对象,方便我们进一步处理数据。
案例 2:自定义对象序列化
class User:
def __init__(self, name, age):
self.name = name
self.age = age
# 自定义编码器
def user_encoder(obj):
if isinstance(obj, User):
return {"name": obj.name, "age": obj.age}
raise TypeError
user = User("小明", 18)
json_str = json.dumps(user, default=user_encoder)
在处理自定义类对象时,默认的 JSON 序列化方法会 “不知所措”。这时,我们自定义的user_encoder函数就像一位 “特殊翻译”,指导json.dumps如何将User对象转换成 JSON 格式,让数据能顺利在不同场景中流转。
案例 3:处理复杂数据类型
from datetime import datetime
from decimal import Decimal
import json
data = {
"time": datetime.now(),
"price": Decimal("99.99")
}
# 自定义序列化
def custom_encoder(obj):
if isinstance(obj, datetime):
return obj.isoformat()
if isinstance(obj, Decimal):
return float(obj)
raise TypeError
json_str = json.dumps(data, default=custom_encoder)
print(json_str)
datetime和Decimal这类复杂数据类型,无法被 JSON 直接处理。通过自定义的custom_encoder,我们将datetime对象转换成 ISO 格式字符串,将Decimal对象转换成float类型,从而突破 JSON 序列化的限制,让数据准确无误地进行转换和存储。
案例 4:多文件数据整合
import json
file_list = ["file1.json", "file2.json", "file3.json"]
combined_data = []
for file in file_list:
with open(file, encoding="utf-8") as f:
data = json.load(f)
combined_data.extend(data)
with open("combined.json", "w", encoding="utf-8") as f:
json.dump(combined_data, f, ensure_ascii=False, indent=2)
在项目开发中,常常需要整合多个 JSON 文件的数据。这段代码通过循环读取多个文件,将数据合并到一个列表中,再将整合后的数据写入新的 JSON 文件,实现了数据的高效汇总与管理。
案例 5:数据过滤与清洗
with open("raw_data.json", encoding="utf-8") as f:
data = json.load(f)
filtered_data = [item for item in data if item["status"] == "active"]
with open("filtered_data.json", "w", encoding="utf-8") as f:
json.dump(filtered_data, f, ensure_ascii=False, indent=2)
当数据量庞大且包含无效或错误信息时,数据过滤与清洗至关重要。此代码从原始 JSON 数据中筛选出状态为 “active” 的条目,去除无效数据,生成更精准、可用的数据集,为后续分析和应用提供保障。
案例 6:实时数据更新
with open("data.json", "r+", encoding="utf-8") as f:
data = json.load(f)
data["count"] = data.get("count", 0) + 1
f.seek(0)
json.dump(data, f, ensure_ascii=False, indent=2)
f.truncate()
在一些需要实时记录数据变化的场景,如计数器、日志记录等,这段代码实现了对 JSON 文件数据的实时更新。通过读取文件数据、修改数据、再写回文件的操作,确保数据的时效性和准确性。
血泪陷阱
编码问题
# 错误示范
json.dumps({"name": "小明"}) # → {"name": "\u5c0f\u660e"}
# 正确做法
json.dumps({"name": "小明"}, ensure_ascii=False)
默认情况下,json.dumps会将非 ASCII 字符转义为 Unicode 编码。添加ensure_ascii=False参数,就可以让中文字符正常显示,避免乱码问题,确保数据在传输和展示过程中的准确性。
循环引用
data = {"a": 1}
data["b"] = data # 循环引用
# 错误示范
json.dumps(data) # ValueError
# 解决方案
from json import JSONEncoder
class MyEncoder(JSONEncoder):
def default(self, obj):
# 处理循环引用
return str(obj)
当数据结构中存在循环引1用时,json.dumps会抛出ValueError。通过自定义JSONEncoder,我们可以对循环引用的对象进行特殊处理,如将其转换成字符串,从而避免程序崩溃。
日期时间处理
# 错误示范
json.dumps({"time": datetime.now()}) # TypeError
# 正确做法
json.dumps({"time": datetime.now().isoformat()})
由于 JSON 本身不支持datetime类型,直接对包含datetime对象的数据进行序列化会导致TypeError。将datetime对象转换成 ISO 格式字符串,是一种简单有效的解决方案,确保日期时间数据能顺利进行 JSON 转换。
专家工具箱
json.dump和json.dumps函数的参数介绍
这两个函数的一些参数配置可使转换后的json数据更美观更容易阅读
默认的参数如下:
skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
default=None, sort_keys=False
- sort_keys参数(排序)
如果传入sort_keys为True,转换为json时讲按照传入的字典进行排序。
python_dictinfo = { 'name': 'lili', 'age': 20}
json_data = json.dumps(python_dictinfo,sort_keys=True)
print(f'转换后的json数据: {json_data}')
#打印排序后的结果
转换后的json数据: {"age": 20, "name": "lili"}
- indent参数(美化输出)
indent传入的是非负整数,则JSON数组元素和对象成员将使用该缩进进行漂亮的打印
python_dictinfo = {"name":"lili","age":20.00,"address":["china","js","nj"],"man":True,"woman":False,"money":None}
json_data = json.dumps(python_dictinfo,indent=4)
print(f'转换后的json数据: {json_data}')
转换后的json数据:
{
"name": "lili",
"age": 20.0,
"address": [
"china",
"js",
"nj"
],
"man": true,
"woman": false,
"money": null
}
- separators参数
表示“分隔符”,默认值为(',',':'),如果指定为其他的元组,比如('a','b'),意味着原来的逗号会被替换为a,原来的冒号会被替换为b,并去掉后面的空格。
python_dictinfo = python_dictinfo = { 'name': 'lili', 'age': 20}
json_data = json.dumps(python_dictinfo,separators=('a','b'))
print(f'转换后的json数据: {json_data}')
#打印结果
转换后的json数据: {"name"b"lili"a"age"b20}
- skipkeys参数
默认值是False,如果“skipkeys”为True,则非python基本数据类型的“dict”键
(“str”、“int”、“float”、“bool”、“None”),将被跳过而不会引发“TypeError”。
#定义一个元组的键
python_dictinfo = {'name': 'lili', 'age': 20, ('china', 'js', 'nj'): None}
json_data = json.dumps(python_dictinfo)
print(f'转换后的json数据: {json_data}')
#执行后报错
TypeError: keys must be str, int, float, bool or None, not tuple
添加参数skipkeys=True
json_data = json.dumps(python_dictinfo,skipkeys=True)
print(f'转换后的json数据: {json_data}')
#打印结果 会忽略掉元组键值
转换后的json数据: {"name": "lili", "age": 20}
- ensure_ascii参数(支持中文)
默认值True,输出ASCLL码,如果配置为False,可以输出中文。
python_dictinfo = {'name': '王磊', 'age': 20 }
json_data = json.dumps(python_dictinfo)
print(f'转换后的json数据: {json_data}')
#结果如下
转换后的json数据: {"name": "\u738b\u78ca", "age": 20}
配置为False后可打印中文
json_data = json.dumps(python_dictinfo,ensure_ascii=False)
print(f'转换后的json数据: {json_data}')
#结果如下
转换后的json数据: {"name": "王磊", "age":20}
- check_circular参数
如果check_circular为false,则跳过对容器类型的循环引用检查,循环引用将导致溢出错误(或更糟的情况)。
- allow_nan参数
默认为True,序列化超出范围的浮点值(nan、inf、-inf)转为json格式 (nan、Infinity、-Infinity)。如果为False,则执行时会报错。
python_dictinfo = {'name': 'lili', 'age': float('inf')}
json_data = json.dumps(python_dictinfo,allow_nan=False)
# allow_nan=False 则执行时会报错
ValueError: Out of range float values are not JSON compliant: inf
小白:(献上膝盖)原来 JSON 处理这么强大!
专家:(扶起小白)记住:JSON 是数据交换的通用语言,掌握它走遍天下都不怕!
- 上一篇:python之json基本操作
- 下一篇:使用Python进行JSON反序列化为对象
相关推荐
- Python中的两个内置函数id()和type()
-
id()>>>id(3)2531362761072>>>id(3.222222)2531397393680>>>id(3.0)25313...
- python 函数中,如何将另一个函数作为参数传递
-
python函数中,如何将另一个函数作为参数传递,类似C#委托defadd(a,b):"""这是一个简单的加法函数,接受两个参数并返回它们的和。""...
- Python性能暴涨10倍的终极指南:7个核心技巧+代码压缩秘籍
-
提升Python程序运行性能,使代码运行更流畅更快,以及压缩代码,减小代码大小,下面的方法仅供大家参考,有什么更好的方法在评论区说说。1.使用NumPy/SciPy替代纯Python循环...
- Python 匿名函数(Lambda 函数)详解
-
匿名函数(AnonymousFunction),在Python中称为lambda函数,是一种不需要使用def关键字定义的小型函数。它主要用于简化代码,特别适合需要函数对象的地方。1.基...
- Python学习笔记 | 匿名函数lambda、映射函数map和过滤函数filter
-
什么是匿名函数?定义:没有函数名的自定义函数场景:函数体非常简单,使用次数很少,没有必要声明函数,通常搭配高阶函数使用。高阶函数是能够把函数当成参数进行传递的函数,如:映射函数map和过滤函数fil...
- python练习:自定义函数调用:商品购物实例
-
1、商品录入dict_myshanpin_iof={101:{"商品名称":"毛毛熊","单价":25},102:{"商品名称":...
- Python中如何使用Lambda函数(lambda在python中的用法)
-
Python和其他编程语言一样,都在其语法中添加了lambda函数,Pythonlambda是匿名函数,比常规Python自定义函数有更简洁的语法。虽然Lambda语法在开始时可能会觉得有点混乱,...
- 8-Python内置函数(python内置函数代码)
-
Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...
- 用Python进行函数式编程(python函数程序)
-
什么是函数式编程?函数式程序设计是一种编程范例,它把计算当作数学函数的评价,避免状态和可变数据。换句话说,函数编程(FunctionalProgramming,FP)促进没有副作用和不变变量的代码。它...
- python 函数进阶(python如何进阶)
-
1.有名函数和匿名函数#该函数有名称,名称是adddefadd(x,y):returnx+y#改函数没有名称属于匿名函数,也叫lambda表达式lambda_add...
- python自学者的分享:自定义函数、参数作用域、匿名函数、装饰器
-
#自定义新函数函数名newhsdefnewhs(a,b=1):#b的默认值为1,在没有传入b值时,采用默认值,,默认值参数不能放前边returna-bprint(newh...
- Python 函数式编程的 8 大核心技巧,不允许你还不会
-
函数式编程是一种强调使用纯函数、避免共享状态和可变数据的编程范式。Python虽然不是纯函数式语言,但提供了丰富的函数式编程特性。以下是Python函数式编程的8个核心技巧:1.纯函数(...
- 零基础到发布:手把手教你创建并分发 Python 自定义库
-
作为程序员,我们经常依赖各种外部库来解决不同的问题。这些库由技术娴熟的开发者创建,为我们提供了节省时间和精力的解决方案。但你是否曾想过:“我也能创建属于自己的自定义库吗?”答案是肯定的!本文将为你详细...
- 打工人学Python:(七)自定义函数,打造自己的武器库
-
从一个简单的函数开始#!/usr/bin/envpython#-*-encoding:utf-8-*-'''@Purpose:Wordcount@...
- 肖sir_python自定义函数format、zip函数
-
python自定义函数一、常见的自定义函数已经学过的函数:list、print、set、str、type、tuple、dict、range、input等今天学的函数:format二、实战讲解(一)f...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)