探索 Python CSV 模块的高级用法:从格式识别到数据转换的完整指南
off999 2025-05-30 16:53 38 浏览 0 评论
CSV(逗号分隔值)是一种用于存储表格数据的文件格式。每一行代表一条数据记录,行内的各个字段由逗号分隔。这是数据领域最常见的文件扩展名之一,也是专业环境中最简单的数据交换格式之一。
作为一名具备 Python 技能的数据专业人士,我相信大家都尝试过使用 csv 模块读取和加载数据。通常,我们对 csv 模块的操作仅限于加载数据,然后继续进行其他任务。
例如,我用 csv 模块读取了来自 Kaggle 的“社会情绪数据”CSV 文件,并展示了所有列名:
import csv
with open('sentimentdataset.csv', newline='', encoding='utf-8') as csvfile:
reader = csv.reader(csvfile)
header = next(reader)
print("Columns:", header)
输出结果如下:
Columns: ['', 'Unnamed: 0', 'Text', 'Sentiment', 'Timestamp', 'User', 'Platform', 'Hashtags', 'Retweets', 'Likes', 'Country', 'Year', 'Month', 'Day', 'Hour']
然而,csv 模块能做的远不止这些,很多强大的功能你可能还未发掘。本文将带你探索 csv 模块更多令人惊喜的用法。
1. 自动检测文件格式
csv 模块本意是处理以逗号分隔的数据文件,但借助 Sniffer 方法,你还能让模块检测实际使用了何种分隔符。在彻底读取数据前,可以先识别数据结构(方言)。
例如,以下代码展示了如何用 csv 模块检测文件分隔符:
import csv
with open('sentimentdataset.csv', newline='', encoding='utf-8') as f:
sample = f.read(2048)
dialect = csv.Sniffer().sniff(sample, delimiters=[',',';','\t'])
print(f"Detected delimiter: {repr(dialect.delimiter)}")
输出如下:
Detected delimiter: ','
在上述代码中,我们从数据文件头部读取了 2KB 的样本,并设置了要检测的分隔符集合。检测结果即为文件所用的分隔符。
2. 检测文件是否包含表头
csv 模块不仅能检测文件格式,还能判断文件是否包含表头。
检测方法如下:
has_header = csv.Sniffer().has_header(sample)
print("Header detected?" , has_header)
输出结果:
Header detected? True
虽然看起来很简单,但实际工作中,经常会遇到 csv 文件缺少必要表头的情况,导致我们无法理解数据结构。将表头检测纳入数据流程中,有助于及早发现读入文件时的错误。
3. 以列表形式读取数据
通过 csv 模块读取文件时,我们可以将每一条数据组织为列表格式。实现方法如下:
with open('sentimentdataset.csv', newline='', encoding='utf-8') as f:
reader = csv.reader(f, dialect)
header = next(reader)
for i, row in enumerate(reader):
if i >= 1: break
print(row)
输出如下:
['0', '0', ' Enjoying a beautiful day at the park! ', ' Positive ', '2023-01-15 12:30:00', ' User123 ', ' Twitter ', ' #Nature #Park ', '15.0', '30.0', ' USA ', '2023', '1', '15', '12']
现在,每一行数据都以列表形式呈现,便于进行后续的数据处理。
4. 列名与数值自动映射
利用 csv 模块,可以将每条数据转为类似字典的数据结构,将每个字段名映射到对应的值,这样就可以通过字段名快速访问数据。
例如,以下代码自动将列名映射到“Text”和“Sentiment”两个字段的值:
with open('sentimentdataset.csv', newline='', encoding='utf-8') as f:
dict_reader = csv.DictReader(f, dialect=dialect)
for i, row in enumerate(dict_reader):
if i >= 2: break
print(row['Text'], row['Sentiment'])
输出如下:
Enjoying a beautiful day at the park! Positive
Traffic was terrible this morning. Negative
如上所示,我们可以通过键值对方式访问每个字段的数据。这种方法让数据处理更加灵活高效。
5. 将 CSV 文件转换为其他格式
csv 模块不仅可以读取文件,也支持将内容转为其他格式。
例如,可以将 csv 文件转换为 gzip 格式:
import csv, gzip
with gzip.open('sentiment.gz', 'wt', newline='', encoding='utf-8') as gz:
writer = csv.writer(gz)
for row in csv.reader(open('sentimentdataset.csv', encoding='utf-8'), dialect=dialect):
writer.writerow(row)
还可以直接将内容输出到标准输出:
import csv, sys
dialect = csv.Sniffer().sniff(sample, delimiters=[',',';','\t'])
writer = csv.writer(sys.stdout)
for row in csv.reader(open('sentimentdataset.csv', encoding='utf-8'), dialect=dialect):
writer.writerow(row)
合理使用 writer,可以帮助你将数据转为所需的文件格式。
6. 为非数字字段加引号
在 CSV 文件中,字段可能包含逗号、引号或混合类型数据(文本和数字)。为非数字值加上双引号,可以确保其中内容(包括逗号或换行符)被当作单独的字符串值处理,而不会被错误地识别为分隔符。
实现方法如下:
import csv
INPUT = 'sentimentdataset.csv'
OUTPUT = 'quoted_nonnum.csv'
with open(INPUT, newline='', encoding='utf-8') as fin, \
open(OUTPUT, 'w', newline='', encoding='utf-8') as fout:
reader = csv.DictReader(fin)
writer = csv.writer(fout, quoting=csv.QUOTE_NONNUMERIC)
writer.writerow(['Text', 'Likes'])
for row in reader:
writer.writerow([row['Text'], row['Likes']])
上述代码选取了“Text”和“Likes”两列,并对所有非数字值加引号,保留数字值原样。这样可以有效避免数据被错误识别为分隔符。
结论
作为数据专业人士,我们可以利用 Python 的 csv 模块灵活处理 CSV 文件。实际上,这个模块还有许多令人惊喜的高级用法,比如自动格式检测、数据格式转换等。
希望本文对你有所帮助!
相关推荐
- Linux 网络协议栈_linux网络协议栈
-
前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...
- 揭秘 BPF map 前生今世_bpfdm
-
1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...
- 教你简单 提取fmpeg 视频,音频,字幕 方法
-
ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...
- Linux内核原理到代码详解《内核视频教程》
-
Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...
- Linux C Socket UDP编程详解及实例分享
-
1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...
- libevent源码分析之bufferevent使用详解
-
libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...
- 一次解决Linux内核内存泄漏实战全过程
-
什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...
- 彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏
-
作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...
- linux网络编程常见API详解_linux网络编程视频教程
-
Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...
- Linux下C++访问web—使用libcurl库调用http接口发送解析json数据
-
一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...
- 平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道
-
在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...
- 谈谈分布式文件系统下的本地缓存_什么是分布式文件存储
-
在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...
- 进程间通信之信号量semaphore--linux内核剖析
-
什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...
- Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门
-
一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...
- 30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南
-
30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)