Python 图像处理
off999 2025-05-30 16:54 89 浏览 0 评论
以前照相从来没有那么容易。现在你只需要一部手机。拍照是免费的,如果我们不考虑手机的费用的话。就在上一代人之前,业余艺术家和真正的艺术家如果拍照非常昂贵,并且每张照片的成本也不是免费的。
我们拍照是为了及时保存伟大的时刻,被保存的记忆随时准备在未来被"打开"。
就像腌制东西一样,我们要注意正确的防腐剂。当然,手机也为我们提供了一系列的图像处理软件,但是一旦我们需要处理大量的照片,我们就需要其他的工具。这时,编程和Python就派上用场了。Python及其模块如Numpy、Scipy、Matplotlib和其他特殊模块提供了各种各样的函数,能够处理大量图片。
为了向你提供必要的知识,本章的Python教程将处理基本的图像处理和操作。为此,我们使用模块NumPy、Matplotlib和SciPy。
我们从scipy包misc开始。
# 以下行仅在Python notebook中需要:
%matplotlib inline
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.gray()
plt.imshow(ascent)
plt.show()
除了图像之外,我们还可以看到带有刻度的轴。这可能是非常有趣的,如果你需要一些关于大小和像素位置的方向,但在大多数情况下,你想看到没有这些信息的图像。我们可以通过添加命令plt.axis("off")来去掉刻度和轴:
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.axis("off") # 删除轴和刻度
plt.gray()
plt.imshow(ascent)
plt.show()
我们可以看到这个图像的类型是一个整数数组:
ascent.dtype
输出:
dtype('int64')
我们也可以检查图像的大小:
ascent.shape
输出:
(512,512)
misc包里还有一张浣熊的图片:
import scipy.misc
face = scipy.misc.face()
print(face.shape)
print(face.max)
print(face.dtype)
plt.axis("off")
plt.gray()
plt.imshow(face)
plt.show()
(768, 1024, 3)
<built-in method max of numpy.ndarray object at 0x7f9e70102800>
uint8
import matplotlib.pyplot as plt
matplotlib只支持png图像
img = plt.imread('frankfurt.png')
print(img[:3])
[[[ 0.41176471 0.56862748 0.80000001]
[ 0.40392157 0.56078434 0.79215688]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.47843137 0.627451 0.81960785]
[ 0.47843137 0.62352943 0.82745099]]
[[ 0.40784314 0.56470591 0.79607844]
[ 0.40392157 0.56078434 0.79215688]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.47843137 0.627451 0.81960785]
[ 0.48235294 0.627451 0.83137256]]
[[ 0.40392157 0.56862748 0.79607844]
[ 0.40392157 0.56862748 0.79607844]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.48235294 0.62352943 0.81960785]
[ 0.48627451 0.627451 0.83137256]]]
plt.axis("off")
imgplot = plt.imshow(img)
lum_img = img[:,:,1]
print(lum_img)
[[ 0.56862748 0.56078434 0.56862748 ..., 0.62352943 0.627451
0.62352943]
[ 0.56470591 0.56078434 0.56862748 ..., 0.62352943 0.627451 0.627451 ]
[ 0.56862748 0.56862748 0.56862748 ..., 0.62352943 0.62352943
0.627451 ]
...,
[ 0.31764707 0.32941177 0.32941177 ..., 0.30588236 0.3137255
0.31764707]
[ 0.31764707 0.3137255 0.32941177 ..., 0.3019608 0.32156864
0.33725491]
[ 0.31764707 0.3019608 0.33333334 ..., 0.30588236 0.32156864
0.33333334]]
plt.axis("off")
imgplot = plt.imshow(lum_img)
色彩、色度和色调
现在,我们将展示如何给图像着色。色彩是色彩理论的一种表达,是画家常用的一种技法。想到画家而不想到荷兰是很难想象的。所以在下一个例子中,我们使用荷兰风车的图片。
windmills = plt.imread('windmills.png')
plt.axis("off")
plt.imshow(windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e77f02f98>
我们现在想给图像着色。我们用白色,这将增加图像的亮度。为此,我们编写了一个Python函数,它接受一个图像和一个百分比值作为参数。设置"百分比"为0不会改变图像,设置为1表示图像将完全变白:
import numpy as np
import matplotlib.pyplot as plt
def tint(imag, percent):
"""
imag: 图像
percent: 0,图像将保持不变,1,图像将完全变白色,值应该在0~1
"""
tinted_imag = imag + (np.ones(imag.shape) - imag) * percent
return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = tint(windmills, 0.8)
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cd99978>
阴影是一种颜色与黑色的混合,它减少了亮度。
import numpy as np
import matplotlib.pyplot as plt
def shade(imag, percent):
"""
imag: 图像
percent: 0,图像将保持不变,1,图像将完全变黑,值应该在0~1
"""
tinted_imag = imag * (1 - percent)
return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = shade(windmills, 0.7)
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cd20048>
def vertical_gradient_line(image, reverse=False):
"""
我们创建一个垂直梯度线。形状 (1, image.shape[1], 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_columns = image.shape[1]
if reverse:
C = np.linspace(1, 0, number_of_columns)
else:
C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C
horizontal_brush = vertical_gradient_line(windmills)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6ccb3d68>
现在,我们将通过将Python函数的reverse参数设置为“True”来从右向左着色图像:
def vertical_gradient_line(image, reverse=False):
"""
我们创建一个水平梯度线。形状 (1, image.shape[1], 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_columns = image.shape[1]
if reverse:
C = np.linspace(1, 0, number_of_columns)
else:
C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C
horizontal_brush = vertical_gradient_line(windmills, reverse=True)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cbc82b0>
def horizontal_gradient_line(image, reverse=False):
"""
我们创建一个垂直梯度线。形状(image.shape[0], 1, 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_rows, number_of_columns = image.shape[:2]
C = np.linspace(1, 0, number_of_rows)
C = C[np.newaxis,:]
C = np.concatenate((C, C, C)).transpose()
C = C[:, np.newaxis]
return C
vertical_brush = horizontal_gradient_line(windmills)
tinted_windmills = windmills
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cb52390>
色调是由一种颜色与灰色的混合产生的,或由着色和阴影产生的。
charlie = plt.imread('Chaplin.png')
plt.gray()
print(charlie)
plt.imshow(charlie)
[[ 0.16470589 0.16862746 0.17647059 ..., 0. 0. 0. ]
[ 0.16078432 0.16078432 0.16470589 ..., 0. 0. 0. ]
[ 0.15686275 0.15686275 0.16078432 ..., 0. 0. 0. ]
...,
[ 0. 0. 0. ..., 0. 0. 0. ]
[ 0. 0. 0. ..., 0. 0. 0. ]
[ 0. 0. 0. ..., 0. 0. 0. ]]
输出:
<matplotlib.image.AxesImage at 0x7f9e70047668>
给灰度图像着色
:http://scikit-image.org/docs/dev/auto_examples/plot_tinting_grayscale_images.html
在下面的示例中,我们将使用不同的颜色映射。颜色映射可以在
matplotlib.pyplot.cm.datad中找到:
plt.cm.datad.keys()
输出:
dict_keys(['afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 'CMRmap', 'cool', 'copper', 'cubehelix', 'flag', 'gnuplot', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'spring', 'summer', 'terrain', 'winter', 'nipy_spectral', 'spectral', 'Blues', 'BrBG', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PiYG', 'PRGn', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'gist_earth', 'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'coolwarm', 'Wistia', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c', 'afmhot_r', 'autumn_r', 'bone_r', 'binary_r', 'bwr_r', 'brg_r', 'CMRmap_r', 'cool_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gnuplot_r', 'gnuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismic_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'nipy_spectral_r', 'spectral_r', 'Blues_r', 'BrBG_r', 'BuGn_r', 'BuPu_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'Oranges_r', 'OrRd_r', 'PiYG_r', 'PRGn_r', 'PuBu_r', 'PuBuGn_r', 'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdPu_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'gist_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gist_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'coolwarm_r', 'Wistia_r', 'Accent_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r', 'tab20c_r', 'Vega10_r', 'Vega20_r', 'Vega20b_r', 'Vega20c_r'])
import numpy as np
import matplotlib.pyplot as plt
charlie = plt.imread('Chaplin.png')
# colormaps plt.cm.datad
# cmaps = set(plt.cm.datad.keys())
cmaps = {'afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg',
'CMRmap', 'cool', 'copper', 'cubehelix', 'Greens'}
X = [ (4,3,1, (1, 0, 0)), (4,3,2, (0.5, 0.5, 0)), (4,3,3, (0, 1, 0)),
(4,3,4, (0, 0.5, 0.5)), (4,3,(5,8), (0, 0, 1)), (4,3,6, (1, 1, 0)),
(4,3,7, (0.5, 1, 0) ), (4,3,9, (0, 0.5, 0.5)),
(4,3,10, (0, 0.5, 1)), (4,3,11, (0, 1, 1)), (4,3,12, (0.5, 1, 1))]
fig = plt.figure(figsize=(6, 5))
#fig.subplots_adjust(bottom=0, left=0, top = 0.975, right=1)
for nrows, ncols, plot_number, factor in X:
sub = fig.add_subplot(nrows, ncols, plot_number)
sub.set_xticks([])
plt.colors()
sub.imshow(charlie*0.0002, cmap=cmaps.pop())
sub.set_yticks([])
#fig.show()相关推荐
- 安全教育登录入口平台(安全教育登录入口平台官网)
-
122交通安全教育怎么登录:122交通网的注册方法是首先登录网址http://www.122.cn/,接着打开网页后,点击右上角的“个人登录”;其次进入邮箱注册,然后进入到注册页面,输入相关信息即可完...
- 大鱼吃小鱼经典版(大鱼吃小鱼经典版(经典版)官方版)
-
大鱼吃小鱼小鱼吃虾是于谦跟郭麒麟的《我的棒儿呢?》郭德纲说于思洋郭麒麟作诗的相声,最后郭麒麟做了一首,师傅躺在师母身上大鱼吃小鱼小鱼吃虾虾吃水水落石出师傅压师娘师娘压床床压地地动山摇。...
-
- 哪个软件可以免费pdf转ppt(免费的pdf转ppt软件哪个好)
-
要想将ppt免费转换为pdf的话,我们建议大家可以下一个那个wps,如果你是会员的话,可以注册为会员,这样的话,在wps里面的话,就可以免费将ppt呢转换为pdfpdf之后呢,我们就可以直接使用,不需要去直接不需要去另外保存,为什么格式转...
-
2026-02-04 09:03 off999
- 电信宽带测速官网入口(电信宽带测速官网入口app)
-
这个网站看看http://www.swok.cn/pcindex.jsp1.登录中国电信网上营业厅,宽带光纤,贴心服务,宽带测速2.下载第三方软件,如360等。进行在线测速进行宽带测速时,尽...
- 植物大战僵尸95版手机下载(植物大战僵尸95 版下载)
-
1可以在应用商店或者游戏平台上下载植物大战僵尸95版手机游戏。2下载教程:打开应用商店或者游戏平台,搜索“植物大战僵尸95版”,找到游戏后点击下载按钮,等待下载完成即可安装并开始游戏。3注意:确...
- 免费下载ppt成品的网站(ppt成品免费下载的网站有哪些)
-
1、Chuangkit(chuangkit.com)直达地址:chuangkit.com2、Woodo幻灯片(woodo.cn)直达链接:woodo.cn3、OfficePlus(officeplu...
- 2025世界杯赛程表(2025世界杯在哪个国家)
-
2022年卡塔尔世界杯赛程公布,全部比赛在卡塔尔境内8座球场举行,2022年,决赛阶段球队全部确定。揭幕战于当地时间11月20日19时进行,由东道主卡塔尔对阵厄瓜多尔,决赛于当地时间12月18日...
- 下载搜狐视频电视剧(搜狐电视剧下载安装)
-
搜狐视频APP下载好的视频想要导出到手机相册里方法如下1、打开手机搜狐视频软件,进入搜狐视频后我们点击右上角的“查找”,找到自已喜欢的视频。2、在“浏览器页面搜索”窗口中,输入要下载的视频的名称,然后...
- 永久免费听歌网站(丫丫音乐网)
-
可以到《我爱音乐网》《好听音乐网》《一听音乐网》《YYMP3音乐网》还可以到《九天音乐网》永久免费听歌软件有酷狗音乐和天猫精灵,以前要跳舞经常要下载舞曲,我从QQ上找不到舞曲下载就从酷狗音乐上找,大多...
- 音乐格式转换mp3软件(音乐格式转换器免费版)
-
有两种方法:方法一在手机上操作:1、进入手机中的文件管理。2、在其中选择“音乐”,将显示出手机中的全部音乐。3、点击“全选”,选中所有音乐文件。4、点击屏幕右下方的省略号图标,在弹出菜单中选择“...
- 电子书txt下载(免费的最全的小说阅读器)
-
1.Z-library里面收录了近千万本电子书籍,需求量大。2.苦瓜书盘没有广告,不需要账号注册,使用起来非常简单,直接搜索预览下载即可。3.鸠摩搜书整体风格简洁清晰,书籍资源丰富。4.亚马逊图书书籍...
- 最好免费观看高清电影(播放免费的最好看的电影)
-
在目前的网上选择中,IMDb(互联网电影数据库)被认为是最全的电影网站之一。这个网站提供了各种类型的电影和电视节目的海量信息,包括剧情介绍、演员表、评价、评论等。其还提供了有关电影制作背后的详细信息,...
- 孤单枪手2简体中文版(孤单枪手2简体中文版官方下载)
-
要将《孤胆枪手2》游戏的征兵秘籍切换为中文,您可以按照以下步骤进行操作:首先,打开游戏设置选项,通常可以在游戏主菜单或游戏内部找到。然后,寻找语言选项或界面选项,点击进入。在语言选项中,选择中文作为游...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
win7系统还原步骤图解(win7还原电脑系统的步骤)
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
16949认证费用是多少(16949审核员太难考了)
-
linux软件(linux软件图标)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
windows7旗舰版多少钱(win7旗舰版要多少钱)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
