百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

资深大佬教你如何利用PyTorch实现图像识别(图文详解)

off999 2025-05-30 16:55 62 浏览 0 评论

这篇文章主要给大家介绍了关于如何利用PyTorch实现图像识别的相关资料,文中通过图文以及实例代码介绍的非常详细,对大家学习或者使用PyTorch具有一定的参考学习价值,需要的朋友可以参考下

目录

  • 使用torchvision库的datasets类加载常用的数据集或自定义数据集
  • 使用torchvision库进行数据增强和变换,自定义自己的图像分类数据集并使用torchvision库加载它们
  • 使用torchvision库的models类加载预训练模型或自定义模型
  • forward方法
  • 总结


使用torchvision库的datasets类加载常用的数据集或自定义数据集

图像识别是计算机视觉中的一个基础任务,它的目标是让计算机能够识别图像中的物体、场景或者概念,并将它们分配到预定义的类别中。例如,给定一张猫的图片,图像识别系统应该能够输出“猫”这个类别。

为了训练和评估图像识别系统,我们需要有大量的带有标注的图像数据集。常用的图像分类数据集有:

  • ImageNet:一个包含超过1400万张图片和2万多个类别的大型数据库,是目前最流行和最具挑战性的图像分类基准之一。
  • CIFAR-10/CIFAR-100:一个包含6万张32×32大小的彩色图片和10或100个类别的小型数据库,适合入门级和快速实验。
  • MNIST:一个包含7万张28×28大小的灰度手写数字图片和10个类别的经典数据库,是深度学习中最常用的测试集之一。
  • Fashion-MNIST:一个包含7万张28×28大小的灰度服装图片和10个类别的数据库,是MNIST数据库在时尚领域上更加复杂和现代化版本。

使用torchvision库可以方便地加载这些常用数据集或者自定义数据集。torchvision.datasets提供了一些加载数据集或者下载数据集到本地缓存文件夹(默认为./data)并返回Dataset对象(torch.utils.data.Dataset) 的函数。Dataset对象可以存储样本及其对应标签,并提供索引方式(dataset[i])来获取第i个样本。例如,要加载CIFAR-10训练集并进行随机打乱,可以使用以下代码:

import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose([transforms.ToTensor()]) # 定义转换函数,将PIL.Image转换为torch.Tensor
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) # 加载CIFAR-10训练集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True) # 定义DataLoader对象,用于批量加载数据


使用torchvision库进行数据增强和变换,自定义自己的图像分类数据集并使用torchvision库加载它们

数据增强和变换:为了提高模型的泛化能力和数据利用率,我们通常会对图像数据进行一些随机的变换,例如裁剪、旋转、翻转、缩放、亮度调整等。这些变换可以在一定程度上模拟真实场景中的图像变化,增加模型对不同视角和光照条件下的物体识别能力。torchvision.transforms提供了一些常用的图像变换函数,可以组合成一个transform对象,并传入datasets类中作为参数。例如,要对CIFAR-10训练集进行随机水平翻转和随机裁剪,并将图像归一化到[-1, 1]范围内,可以使用以下代码:

import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.RandomCrop(32, padding=4), # 随机裁剪到32×32大小,并在边缘填充4个像素
transforms.ToTensor(), # 将PIL.Image转换为torch.Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 将RGB三个通道的值归一化到[-1, 1]范围内
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) # 加载CIFAR-10训练集,并应用上述变换
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True) # 定义DataLoader对象,用于批量加载数据

自定义图像分类数据集:如果我们有自己的图像分类数据集,我们可以通过继承torch.utils.data.Dataset类来自定义一个Dataset对象,并实现__len__和__getitem__两个方法。__len__方法返回数据集中样本的数量,__getitem__方法根据给定的索引返回一个样本及其标签。例如,假设我们有一个文件夹结构如下:

my_dataset/
├── class_0/
│ ├── image_000.jpg
│ ├── image_001.jpg
│ └── ...
├── class_1/
│ ├── image_000.jpg
│ ├── image_001.jpg
│ └── ...
└── ...


其中每个子文件夹代表一个类别,每个子文件夹中包含该类别对应的图像文件。我们可以使用以下代码来自定义一个Dataset对象,并加载这个数据集:

import torch.utils.data as data
from PIL import Image
import os
class MyDataset(data.Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir # 根目录路径
self.transform = transform # 变换函数
self.classes = sorted(os.listdir(root_dir)) # 类别列表(按字母顺序排序)
self.class_to_idx = {c: i for i,c in enumerate(self.classes)} # 类别名到索引的映射
self.images = [] # 图片路径列表(相对于根目录)
self.labels = [] # 标签列表(整数)
for c in self.classes:
c_dir = os.path.join(root_dir, c) # 类别子目录路径
for img_name in sorted(os.listdir(c_dir)): # 遍历每个图片文件名(按字母顺序排序)
img_path = os.path.join(c,img_name) # 图片相对路径(相对于根目录)
label = self.class_to_idx[c] # 图


使用torchvision库的models类加载预训练模型或自定义模型

加载预训练模型或自定义模型:torchvision.models提供了一些常用的图像分类模型,例如AlexNet、VGG、ResNet等,并且可以选择是否加载在ImageNet数据集上预训练好的权重。这些模型可以直接用于图像分类任务,也可以作为特征提取器或者微调(fine-tune)的基础。例如,要加载一个预训练好的ResNet-18模型,并冻结除最后一层外的所有参数,可以使用以下代码:

import torchvision.models as models
model = models.resnet18(pretrained=True) # 加载预训练好的ResNet-18模型
for param in model.parameters(): # 遍历所有参数
param.requires_grad = False # 将参数的梯度设置为False,表示不需要更新
num_features = model.fc.in_features # 获取全连接层(fc)的输入特征数
model.fc = torch.nn.Linear(num_features, 10) # 替换全连接层为一个新的线性层,输出特征数为10(假设有10个类别)


如果我们想要自定义自己的图像分类模型,我们可以通过继承torch.nn.Module类来实现一个Module对象,并实现__init__和forward两个方法。__init__方法用于定义模型中需要的各种层和参数,forward方法用于定义前向传播过程。例如,要自定义一个简单的卷积神经网络(CNN)模型,可以使用以下代码:

import torch.nn as nn
class MyCNN(nn.Module):
def __init__(self):
super(MyCNN, self).__init__() # 调用父类构造函数
self.conv1 = nn.Conv2d(3, 6, 5) # 定义第一个卷积层,输入通道数为3(RGB),输出通道数为6,卷积核大小为5×5
self.pool = nn.MaxPool2d(2, 2) # 定义最大池化层,池化核大小为2×2,步长为2
self.conv2 = nn.Conv2d(6, 16, 5) # 定义第二个卷积层,输入通道数为6,输出通道数为16,卷积核大小为5×5
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 定义第一个全连接层,输入特征数为16×5×5(根据卷积和池化后的图像大小计算得到),输出特征数为120
self.fc2 = nn.Linear(120, 84) # 定义第二个全连接层,输入特征数为120,输出特征数为84
self.fc3 = nn.Linear(84, 10) # 定义第三个全连接层,输入特征数为84,


forward方法

forward方法用于定义前向传播过程,即如何根据输入的图像张量(Tensor)计算出输出的类别概率分布。我们可以使用定义好的各种层和参数,并结合一些激活函数(如ReLU)和归一化函数(如softmax)来实现forward方法。例如,要实现上面自定义的CNN模型的forward方法,可以使用以下代码:

import torch.nn.functional as F
class MyCNN(nn.Module):
def __init__(self):
# 省略__init__方法的内容
...
def forward(self, x): # 定义前向传播过程,x是输入的图像张量
x = self.pool(F.relu(self.conv1(x))) # 将x通过第一个卷积层和ReLU激活函数,然后通过最大池化层
x = self.pool(F.relu(self.conv2(x))) # 将x通过第二个卷积层和ReLU激活函数,然后通过最大池化层
x = x.view(-1, 16 * 5 * 5) # 将x展平为一维向量,-1表示自动推断批量大小
x = F.relu(self.fc1(x)) # 将x通过第一个全连接层和ReLU激活函数
x = F.relu(self.fc2(x)) # 将x通过第二个全连接层和ReLU激活函数
x = self.fc3(x) # 将x通过第三个全连接层
x = F.softmax(x, dim=1) # 将x通过softmax函数,沿着第一个维度(类别维度)进行归一化,得到类别概率分布
return x # 返回输出的类别概率分布


进行模型训练和测试,使用matplotlib.pyplot库可视化结果

模型训练和测试是机器学习中的重要步骤,它们可以帮助我们评估模型的性能和泛化能力。matplotlib.pyplot是一个Python库,它可以用来绘制各种类型的图形,包括曲线图、散点图、直方图等。使用matplotlib.pyplot库可视化结果的一般步骤如下:

  • 导入matplotlib.pyplot模块,并设置一些参数,如字体、分辨率等。
  • 创建一个或多个图形对象(figure),并指定大小、标题等属性。
  • 在每个图形对象中创建一个或多个子图(subplot),并指定位置、坐标轴等属性。
  • 在每个子图中绘制数据,使用不同的函数和参数,如plot、scatter、bar等。
  • 添加一些修饰元素,如图例(legend)、标签(label)、标题(title)等。
  • 保存或显示图形。

例如:使用matplotlib.pyplot库绘制了一个线性回归模型的训练误差和测试误差曲线:

# 导入模块
import matplotlib.pyplot as plt
import numpy as np
# 设置字体和分辨率
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
%config InlineBackend.figure_format = "retina"
# 生成数据
x = np.linspace(0, 10, 100)
y = 3 * x + 5 + np.random.randn(100) * 2 # 真实值
w = np.random.randn() # 随机初始化权重
b = np.random.randn() # 随机初始化偏置
# 定义损失函数
def loss(y_true, y_pred):
return ((y_true - y_pred) ** 2).mean()
# 定义梯度下降函数
def gradient_descent(x, y_true, w, b, lr):
y_pred = w * x + b # 预测值
dw = -2 * (x * (y_true - y_pred)).mean() # 权重梯度
db = -2 * (y_true - y_pred).mean() # 偏置梯度
w = w - lr * dw # 更新权重
b = b - lr * db # 更新偏置
return w, b
# 训练模型,并记录每轮的训练误差和测试误差
epochs = 20 # 训练轮数
lr = 0.01 # 学习率
train_loss_list = [] # 训练误差列表
test_loss_list = [] # 测试误差列表
for epoch in range(epochs):
# 划分训练集和测试集(8:2)
train_index = np.random.choice(100, size=80, replace=False)
test_index = np.setdiff1d(np.arange(100), train_index)
x_train, y_train = x[train_index], y[train_index]
x_test, y_test = x[test_index], y[test_index]
# 梯度下降更新参数,并计算训练误差和测试误差
w, b = gradient_descent(x_train, y_train, w, b, lr)
train_loss = loss(y_train, w * x_train + b)
test_loss = loss(y_test, w * x_test + b)
# 打印结果,并将误差添加到列表中
print(f"Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
train_loss_list.append(train_loss)
test_loss_list.append(test_loss)
# 创建一个图形对象,并设置大小为8*6英寸
plt.figure(figsize=(8,6))
# 在图形对象中创建一个子图,并设置位置为1行1列的第1个
plt.subplot(1, 1, 1)
# 在子图中绘制训练误差和测试误差曲线,使用不同的颜色和标签
plt.plot(np.arange(epochs), train_loss_list, "r", label="Train Loss")
plt.plot(np.arange(epochs), test_loss_list, "b", label="Test Loss")
# 添加图例、坐标轴标签和标题
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Linear Regression Loss Curve")
# 保存或显示图形
#plt.savefig("loss_curve.png")
plt.show()

运行后,可以看到如下的图形:

参考:: PyTorch官方网站


总结

到此这篇关于如何利用PyTorch实现图像识别的文章就介绍到这了,更多相关PyTorch图像识别内容请搜索小编以前的文章或继续浏览下面的相关文章希望大家以后多多支持小编!

相关推荐

大文件传不动?WinRAR/7-Zip 入门到高手,这 5 个技巧让你效率翻倍

“这200张照片怎么传给女儿?微信发不了,邮箱附件又超限……”62岁的张阿姨对着电脑犯愁时,儿子只用了3分钟就把照片压缩成一个文件,还教她:“以后用压缩软件,比打包行李还方便!”职场人更懂这...

电脑解压缩软件推荐——7-Zip:免费、高效、简洁的文件管理神器

在日常工作中,我们经常需要处理压缩文件。无论是下载软件包、接收文件,还是存储大量数据,压缩和解压缩文件都成为了我们日常操作的一部分。而说到压缩解压软件,7-Zip绝对是一个不可忽视的名字。今天,我就来...

设置了加密密码zip文件要如何打开?这几个方法可以试试~

Zip是一种常见的压缩格式文件,文件还可以设置密码保护。那设置了密码的Zip文件要如何打开呢?不清楚的小伙伴一起来看看吧。当我们知道密码想要打开带密码的Zip文件,我们需要用到适用于Zip格式的解压缩...

大文件想要传输成功,怎么把ZIP文件分卷压缩

不知道各位小伙伴有没有这样的烦恼,发送很大很大的压缩包会受到限制,为此,想要在压缩过程中将文件拆分为几个压缩包并且同时为所有压缩包设置加密应该如何设置?方法一:使用7-Zip免费且强大的文件管理工具7...

高效处理 RAR 分卷压缩包:合并解压操作全攻略

在文件传输和存储过程中,当遇到大文件时,我们常常会使用分卷压缩的方式将其拆分成多个较小的压缩包,方便存储和传输。RAR作为一种常见的压缩格式,分卷压缩包的使用频率也很高。但很多人在拿到RAR分卷...

2个方法教你如何删除ZIP压缩包密码

zip压缩包设置了加密密码,每次解压文件都需要输入密码才能够顺利解压出文件,当压缩包文件不再需要加密的时候,大家肯定想删除压缩包密码,或是忘记了压缩包密码,想要通过删除操作将压缩包密码删除,就能够顺利...

速转!漏洞预警丨压缩软件Winrar目录穿越漏洞

WinRAR是一款功能强大的压缩包管理器,它是档案工具RAR在Windows环境下的图形界面。该软件可用于备份数据,缩减电子邮件附件的大小,解压缩从Internet上下载的RAR、ZIP及其它类...

文件解压方法和工具分享_文件解压工具下载

压缩文件减少文件大小,降低文件失效的概率,总得来说好处很多。所以很多文件我们下载下来都是压缩软件,很多小伙伴不知道怎么解压,或者不知道什么工具更好,所以今天做了文件解压方法和工具的分享给大家。一、解压...

[python]《Python编程快速上手:让繁琐工作自动化》学习笔记3

1.组织文件笔记(第9章)(代码下载)1.1文件与文件路径通过importshutil调用shutil模块操作目录,shutil模块能够在Python程序中实现文件复制、移动、改名和删除;同时...

Python内置tarfile模块:读写 tar 归档文件详解

一、学习目标1.1学习目标掌握Python内置模块tarfile的核心功能,包括:理解tar归档文件的原理与常见压缩格式(gzip/bz2/lzma)掌握tar文件的读写操作(创建、解压、查看、过滤...

使用python展开tar包_python拓展

类Unix的系统,打包文件经常使用的就是tar包,结合zip工具,可以方便的打包并解压。在python的标准库里面有tarfile库,可以方便实现生成了展开tar包。使用这个库最大的好处,可能就在于不...

银狐钓鱼再升级:白文件脚本化实现GO语言后门持久驻留

近期,火绒威胁情报中心监测到一批相对更为活跃的“银狐”系列变种木马。火绒安全工程师第一时间获取样本并进行分析。分析发现,该样本通过阿里云存储桶下发恶意文件,采用AppDomainManager进行白利...

ZIP文件怎么打开?2个简单方法教你轻松搞定!

在日常工作和生活中,我们经常会遇到各种压缩文件,其中最常见的格式之一就是ZIP。ZIP文件通过压缩数据来减少文件大小,方便我们进行存储和传输。然而,对于初学者来说,如何打开ZIP文件可能会成为一个小小...

Ubuntu—解压多个zip压缩文件.zip .z01 .z02

方法将所有zip文件放在同一目录中:zip_file.z01,zip_file.z02,zip_file.z03,...,zip_file.zip。在Zip3.0版本及以上,使用下列命令:将所有zi...

如何使用7-Zip对文件进行加密压缩

7-Zip是一款开源的文件归档工具,支持多种压缩格式,并提供了对压缩文件进行加密的功能。使用7-Zip可以轻松创建和解压.7z、.zip等格式的压缩文件,并且可以通过设置密码来保护压缩包中的...

取消回复欢迎 发表评论: