python线性回归(Python线性回归原理)
off999 2024-09-23 11:35 26 浏览 0 评论
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理
一.理论基础
1.回归公式
对于单元的线性回归,我们有:f(x) = kx + b 的方程(k代表权重,b代表截距)。
对于多元线性回归,我们有:
或者为了简化,干脆将b视为k0·x0,,其中k0为1,于是我们就有:
2.损失函数
3.误差衡量
MSE,RMSE,MAE越接近于0越好,R方越接近于1越好。
MSE平均平方误差(mean squared error)
RMSE,是MSE的开根号
MAE平均绝对值误差(mean absolute error)
R方
其中y_hat是预测值。
二.代码实现
本次,我们将用iris数据集实现单元线性回归的机器学习,使用boston数据集实现多元线性回归的机器学习。在python中,单元线性回归与多元线性回归的操作完全一样,这里只是为了演示而将其一分为二。
1.鸢尾花花瓣长度与宽度的线性回归
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 导入用于分割训练集和测试集的类
from sklearn.model_selection import train_test_split
# 导入线性回归类
from sklearn.linear_model import LinearRegression
import numpy as np
iris = load_iris()
'''
iris数据集的第三列是鸢尾花长度,第四列是鸢尾花宽度
x和y就是自变量和因变量
reshape(-1,1)就是将iris.data[:,3]由一维数组转置为二维数组,
以便于与iris.data[:,2]进行运算
'''
x,y = iris.data[:,2].reshape(-1,1),iris.data[:,3]
lr = LinearRegression()
'''
train_test_split可以进行训练集与测试集的拆分,
返回值分别为训练集的x,测试集的x,训练集的y,测试集的y,
分别赋值给x_train,x_test,y_train,y_test,
test_size:测试集占比
random_state:选定随机种子
'''
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.25,random_state = 0)
# 利用训练集进行机器学习
lr.fit(x_train,y_train)
# 权重为lr.coef_
# 截距为lr.intercept_
# 运用训练出来的模型得出测试集的预测值
y_hat = lr.predict(x_test)
# 比较测试集的y值与预测出来的y值的前5条数据
print(y_train[:5])
print(y_hat[:5])
# 评价模型的准确性,用测试集来评价
# 导入分别用于求MSE,MAE和R方的包
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
# 求解MSE
print('MSE:',mean_squared_error(y_test,y_hat))
# 求解RMSE,是MSE的开根号
print('RMSE:',np.sqrt(mean_squared_error(y_test,y_hat))
# 求解MAE
print('MAE:',mean_absolute_error(y_test,y_hat))
# 求解R方,有两种方法,注意lr.score的参数是x_test,y_test
print('R方:',r2_score(y_test,y_hat))
print('R方:',lr.score(x_test,y_test))
# 导入matplotlib模块,进行可视化
from matplotlib import pyplot as plt
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.size'] = 15
plt.figure(figsize = (20,8))
# 训练集散点图
plt.scatter(x_train,y_train,color = 'green',marker = 'o',label = '训练集')
# 测试集散点图
plt.scatter(x_test,y_test,color = 'orange',marker = 'o',label = '测试集')
# 回归线
plt.plot(x,lr.predict(x),'r-')
plt.legend()
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
就这样画出了一张很丑的图,如果想画更精美的图或者其他方面的比较,各位读者不妨自己去试一试吧。
刚刚我们做了对鸢尾花花瓣长度和宽度的线性回归,探讨长度与宽度的关系,探究鸢尾花的花瓣宽度受长度变化的趋势是怎么样的。但是在现实生活当中的数据是十分复杂的,像这种单因素影响的事物是比较少的,我们需要引入多元线性回归来对多个因素的权重进行分配,从而与复杂事物相符合。
2.boston房价预测(多元线性回归)
呐,boston数据集的介绍在这里了,我就不详细介绍了
现在,我们要探讨boston当中每一个因素对房价的影响有多大,这就是一个多因素影响的典型例子。
import pandas as pd
import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
boston = load_boston()
# lr继承LinearRegression类
lr = LinearRegression()
# 因为boston.data本身就是二维数组,所以无需转置,boston.target是房价
x,y = boston.data,boston.target
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.15,random_state = 0)
lr.fit(x_train,y_train)
# 显示权重,因为有很多因素,所以权重也有很多个
print(lr.coef_)
# 显示截距
print(lr.intercept_)
y_hat = lr.predict(x_test)
# 模型评判仍然是用那几个包,这里不再赘述。
结果如下,可以发现每一个因素都有相应的权重。
[-1.24536078e-01 4.06088227e-02 5.56827689e-03 2.17301021e+00
-1.72015611e+01 4.02315239e+00 -4.62527553e-03 -1.39681074e+00
2.84078987e-01 -1.17305066e-02 -1.06970964e+00 1.02237522e-02
-4.54390752e-01]
36.09267761760974
私信小编01即可获取大量Python学习资料
相关推荐
- Linux 网络协议栈_linux网络协议栈
-
前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...
- 揭秘 BPF map 前生今世_bpfdm
-
1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...
- 教你简单 提取fmpeg 视频,音频,字幕 方法
-
ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...
- Linux内核原理到代码详解《内核视频教程》
-
Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...
- Linux C Socket UDP编程详解及实例分享
-
1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...
- libevent源码分析之bufferevent使用详解
-
libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...
- 一次解决Linux内核内存泄漏实战全过程
-
什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...
- 彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏
-
作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...
- linux网络编程常见API详解_linux网络编程视频教程
-
Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...
- Linux下C++访问web—使用libcurl库调用http接口发送解析json数据
-
一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...
- 平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道
-
在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...
- 谈谈分布式文件系统下的本地缓存_什么是分布式文件存储
-
在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...
- 进程间通信之信号量semaphore--linux内核剖析
-
什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...
- Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门
-
一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...
- 30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南
-
30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)