百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Hilbert解调在振动信号处理中的应用

off999 2024-09-23 11:36 37 浏览 0 评论

1、Hilbert解调原理

我们知道信号解调是信号调制的反过程。解调就是从已调制的高频信号中解调出原始调制信号。信号调制包括调幅、调频、调相,因此信号解调的目的就是:根据已有信号,提取出信号中的包络、相位、频率信息。

Hilbert变换的作用是把信号频率分量的相位推迟90度,因此也叫做90度移相器。下面我们看一下通过Hilbert变换是如何实现信号解调的。

首先,我们假设有一个调制后的信号,形式如下所示。其中A(t)是幅度调制信息,fn是载波频率,ψ(t)是相位调制信息。

信号x(t)的希尔伯特表达式,可以用下式来表达。y(t)和x(t)相位差90度,相当于余弦变成正弦。

我们用下式来表示x(t),y(t)的相位。

用式(一)和式(二)左右两边平方、相加再开根号可得瞬时幅值,如下所示:

用式(二)除以式(一),两端同时取反正切可得瞬时相位,如下所示:

对式(三)两端求导数可得瞬时频率(单位为频率),如下所示:

上述求式(四)、式(五)、式(六)的过程有什么意义呢?在信号解析过程中,我们实际上只知道x(t)信号,A(t)、fn和ψ(t)都可能是未知的。我们可以通过hilbert算法得到y(t) = hilbert(x(t))。那么上面的解调过程可以理解为,已知x(t)和y(t)得出瞬时幅值、瞬时相位和瞬时频率。

2、Hilbert解调仿真

在Matlab软件中,y=hilbert(x),其中x表示输入信号,输出信号y是一个复数序列,y的实部是原始实数序列x,虚部是Hilbert变换的结果。

本次仿真的目的是构造一个调制信号,用三种方法计算其瞬时幅值、相位、频率。第一种方法是直接使用matlab内置的算法;第二种方法是直接求解方程,解出瞬时幅值、相位、频率。这种方法只能在已知调制信号的场景下使用,用于事后分析。第三种方法是使用本文中用到的数学推导公式来计算瞬时幅值、相位、频率。如果三种方法结论一致,那就是最好的结果。

%基本参数配置
fs = 1000;
T = 1;
N = fs * T;
dt = 1 / fs;
t = (0:N-1) * dt;

%调制信号设置,a是调幅,b是调相,c是载波
a = 1 + 0.5 * cos(2 * pi * 5 * t);
b = sin(2 * pi * 10 * t);
c = cos(2 * pi * 30 * t + b);
x = a .* c;
y = hilbert(x);

figure(1),
hold on
plot(t,real(y),'red');
plot(t,imag(y),'blue');
plot(t,abs(y),'green');
hold off

%方法1,用matlab内置算法得到的瞬时幅值、相位、频率
z1 = abs(y);
z2 = unwrap(angle(y));
z3 = instfreq(x, fs,'Method','hilbert')';

figure(2),
subplot(3, 1, 1); 
plot(t,z1,'red');
subplot(3, 1, 2); 
plot(t,z2,'green');
subplot(3, 1, 3); 
plot(t(1:N-1),z3,'blue');
 
%方法2,求解x(t),y(t)得到的瞬时幅值、相位、频率
m1 = a;
m2 = 2*pi*30*t + sin(2*pi*10*t);
m3 = 2*pi*30 + 20*pi*cos(2*pi*10*t);

figure(3),
subplot(3, 1, 1); 
plot(t,m1,'red');
subplot(3, 1, 2); 
plot(t,m2,'green');
subplot(3, 1, 3); 
plot(t,m3,'blue');
 
%方法3,根据定义得到的瞬时幅值、相位、频率
p1 = sqrt(real(y).^2 + imag(y).^2);
p2 = atan(imag(y)./real(y));
p3 = diff(p2);

figure(4),
subplot(3, 1, 1); 
plot(t,p1,'red');
subplot(3, 1, 2); 
plot(t,p2,'green');
subplot(3, 1, 3); 
plot(t,p3,'blue');
  • 图1表示hilbert变换的实部、虚部、包络线之间的关系。
  • 图2使用matlab内置算法画出了调制信号的瞬时幅值、瞬时相位、瞬时频率。
  • 图3我们对调制信号直接求导可以算出它的瞬时幅值、瞬时相位、瞬时频率。
  • 我们看到图3的瞬时幅值、瞬时相位和图2完全相同,瞬时频率形态相同,但是纵坐标有差异。
  • 图4我们用推导出的公式计算信号的瞬时幅值、瞬时相位、瞬时频率。
  • 图4的瞬时幅值和图2,图3完全相同,但是瞬时相位、瞬时频率完全不同,差异很大。

这个仿真结果有些不理想,推导公式应该是没有问题,但是画出来的图差异却非常大,这个结果有些令人费解(后续会继续找原因)。

3、Hilbert解调应用1

本节我们用小波律动公司最近刚接收到的一组早期预警数据进行分析。振动传感器安装在一个齿轮箱上,其中包含多个轴承和齿轮,输入轴转速大约为1135r/min,齿轮箱内部参数都已知,所以特征频率都能计算出来,这里不一一列举了。数据的采样频率为2000Hz,能覆盖所有的轴承特征频率,但是不能覆盖齿轮啮合频率,所以这里是存在频率混叠现象的,可以参考之前发的文章《振动频谱分析中的频率混叠现象》。

预警信息内容如下所示:

特征频率:(100.586Hz,0.795)出现了2倍频(201.172Hz,0.146);角接触球轴承162250LB滚动体过外圈频率89.625Hz 出现了边频对(62.5Hz,0.363)、(119.141Hz,0.255);

这条预警信息中包含两个内容。

1、(100.586Hz,0.795)出现了2倍频(201.172Hz,0.146),但是这个特征频率没有匹配到,可能是某个高频频率混叠后变成了100.586Hz。这个问题我们今天不分析。

2、角接触球轴承162250LB滚动体过外圈频率89.625Hz 出现了边频对(62.5Hz,0.363)、(119.141Hz,0.255)。这个是我们今天要分析的重点,我们用python代码来进行分析。

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft
from scipy.signal import hilbert

#载入数据文件,生成数值数组
f = open("/Users/tom/Desktop/123456.txt", encoding = "utf-8")
fstr = f.read()
f.close()
flist = fstr.split()
x = []
for key in flist:
	x.append(float(key))

#基本信息设置
fs = 2000
N = len(x)
t = np.arange(0, N/fs, 1/fs)
t1 = np.arange(0, fs/2, fs/N)

#fft变换 + hilbert变换
f1 = fft(x)
yabs = abs(f1)
y = hilbert(x)
h = abs(y)
f2 = fft(h)
fabs2 = abs(f2)
fabs2[0] = 0;#去掉初始相位的影响

#画原始波形图
plt.figure()
plt.subplot(311)
plt.plot(t, x)

#画原始波形的频谱图,频谱图上画出一些点,这些点需要额外计算
plt.subplot(312)
plt.plot(t1, yabs[0 : int(N/2)]*2/N)

xd1 = [62.5, 90.82, 100.6, 119.1, 201.2]
yd1 = [0.36, 0.38, 0.79, 0.25, 0.15]

for (a, b) in zip(xd1, yd1):
	plt.plot(a, b,'r.')
	plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=10)

#画包络谱图,包络谱上画出一些点,这些点需要额外计算
plt.subplot(313)
plt.plot(t1, fabs2[0 : int(N/2)]*2/N)

xd2 = [28.32]
yd2 = [0.2]

for (a, b) in zip(xd2, yd2):
	plt.plot(a, b,'r.')
	plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=10)

plt.show()
  • 图1是振动波形数据。
  • 图2是波形数据的fft变换,我们为了显示点坐标,把fft图像做了放大处理。python最大的缺点就是画出的图不能用鼠标打点,导致我们想画的点必须提前计算好,再用程序画出来。
  • 图3是对数据进行hilbert变换后再进行fft变换得到的。

从图2,我们可以算出边频的间隔大约是28.32Hz,这个频率恰好就是图3中的频率,这个频率的幅值在低频部分是峰值最大的一个。经过和设备频率表对比,我们发现这个频率和轴承对应的转轴频率非常接近。这说明轴上出现了故障隐患,所以轴转频28.32Hz对滚动体过外圈频率90.82hz产生了调制现象(和报警频率有差异是因为匹配产生了误差)。这个案例比较简单,证明了hilbert解调算法在工业信号解调中的有效性。

4、Hilbert解调应用2

本节我们分析一组轴承试验台数据,电机为恒转速,其转速 R=1496r/min,轴承的大径 D=80mm,小径 d=35mm,滚动体个数为Z=8,接触角为0度。轴承的点蚀实验中,轴承各元件上的点蚀均为单点点蚀,点蚀缺陷的大小均为直径2mm,深0.1mm的小凹坑。轴承由滚动体、内圈、外圈、保持架四类元件组成。通过这些参数,我们可以算出轴承的特征频率表。我们这里只列出了仿真故障轴承的相关频率,其他设备部件的特征频率没有列出。本案例我们将会使用第二代小波分析技术辅助hilbert解调得出故障诊断结果。

我们用6000Hz采样频率进行采样,其波形和频谱图如下图a,b所示。

从图(b)我们很难直接分析出故障频率,但是我们看到在 2000Hz (某个高频特征频率)附近有明显调制现象产生,位置恰好为小波包 1 层分解第 2 个频带附近。因此对轴承点蚀信号进行 1 层小波分解,然后对(1,2)频带进行单支重构。对重构信号进行 Hilbert 解调,再进行频谱分析, 我们得到了内圈特征频率及其多倍频(很接近),如下图(d)所示。这样我们就实现了对轴承内圈故障频率的识别。

这个案例我们还是用到了Hilbert 解调的原理,但是因为信号整体比较复杂,如果直接用Hilbert 解调会导致解调后的信号依旧很复杂,故障频率不是主要成分,所以我们用了第二代小波分析技术,对部分频带的信号进行单支重构,这样就去掉了无效信号,只留下了最重要的信号部分,使得最终解调后的信号特征明显。

5、结论

本文讲到了Hilbert解调分析,对原理设计到的公式进行了推导。之前查了一些资料对里面不理解的部分进行了仿真实验,结果还是有些出乎意料,没有完全达到预期,对于这些疑惑后面如果找到答案,我会再陆续更新。

Hilbert解调是作者近期在学习的一个信号处理方法,主要目的还是想应用到故障诊断系统中,所以学到哪里博客就写到哪里吧。小波律动公司的在线检测故障诊断系统一直在不断完善中,Hilbert解调等算法也会支持。工业软件不同于仿真实验,仿真实验我们可以根据人工干预来达到想要的实验效果,相当于事后分析。但是工业软件不能像人一样做事后分析,都是事前分析,设定好了算法,直接分析数据,要得出仿真实验的结果还是有难度的。我们的目的是希望构造一个专家系统能尽量模仿人的分析行为,最终代替人,或者半代替人得出故障诊断结论。

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: