C,Java和Python之间的性能比较(java,python,c++有什么区别)
off999 2025-07-23 17:32 18 浏览 0 评论
这是我用所有三种语言运行矩阵乘法时发生的情况
在过去的两年中,我为C语言做了大量的实现工作。 我之所以选择C语言而不是其他语言,是因为人们普遍认为C代码比其他流行的编程语言(例如Java和Python)运行得更快。 但是,即使我一直对C的速度(或C实际上最快)感到好奇,我自己也没有做任何实验来证实这一说法。 最后,我决定进行一些实验,以比较C,Java和Python的性能。 本文是关于我进行的实验和获得的结果的文章。
本实验
我决定使用所有三种语言进行矩阵乘法。 矩阵的大小为2048 x 2048(即每个矩阵的乘法和加法运算为8,589,934,592),我为它们填充了0.0到1.0之间的随机值(使用随机值而不是对所有三种语言使用完全相同的矩阵的影响可以忽略不计)。 我将每个实验运行了五次,并计算了平均运行时间。
C代码
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define n 2048
double A[n][n];
double B[n][n];
double C[n][n];
int main() {
//populate the matrices with random values between 0.0 and 1.0
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = (double) rand() / (double) RAND_MAX;
B[i][j] = (double) rand() / (double) RAND_MAX;
C[i][j] = 0;
}
}
struct timespec start, end;
double time_spent;
//matrix multiplication
clock_gettime(CLOCK_REALTIME, &start);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
clock_gettime(CLOCK_REALTIME, &end);
time_spent = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1000000000.0;
printf("Elapsed time in seconds: %f \n", time_spent);
return 0;
}Java代码
import java.util.Random;
public class MatrixMultiplication {
static int n = 2048;
static double[][] A = new double[n][n];
static double[][] B = new double[n][n];
static double[][] C = new double[n][n];
public static void main(String[] args) {
//populate the matrices with random values between 0.0 and 1.0
Random r = new Random();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = r.nextDouble();
B[i][j] = r.nextDouble();
C[i][j] = 0;
}
}
long start = System.nanoTime();
//matrix multiplication
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
long stop = System.nanoTime();
double timeDiff = (stop - start) * 1e-9;
System.out.println("Elapsed time in seconds: " + timeDiff);
}
}Python代码
import random
import time
n = 2048
#populate the matrices with random values between 0.0 and 1.0
A = [[random.random() for row in range(n)] for col in range(n)]
B = [[random.random() for row in range(n)] for col in range(n)]
C = [[0 for row in range(n)] for col in range(n)]
start = time.time()
#matrix multiplication
for i in range(n):
for j in range(n):
for k in range(n):
C[i][j] += A[i][k] * B[k][j]
end = time.time()
print("Elapsed time in seconds %0.6f" % (end-start))如何编译和运行
#C
gcc MatrixMultiplication.c -o matrix
./matrix
#Java
javac MatrixMultiplication.java
java MatrixMultiplication
#Python
python MatrixMultiplication.py运行时间
根据这些结果,C比Java慢2.34倍,Python比Java慢33.34倍。
等待!!! C应该不是最快的吗???
实际上,这是不公平的比较。 当我们编译Java程序时,即使没有任何优化标志,Java JIT(即时)编译器也会自动执行优化。 但是,对于GCC(编译C程序),情况并非如此,我们必须显式设置优化标志。
因此,我在编译C程序时使用了-O2和-O3优化标志,并再次进行了实验。
gcc -O2 MatrixMultiplication.c -o matrix./matrixgcc -O3 MatrixMultiplication.c -o matrix./matrix
新的经过时间
现在,Java代码比C [-O3]慢1.69倍,而Python代码慢56倍。 我做出了正确的决定(或者很幸运:-)),选择了C而不是其他编程语言。
总结结果
讨论结果
· Python相对非常慢,因为C是经过编译的,而Python是被解释的。 编译器一次将C代码转换为机器代码。 另一方面,解释器必须读取,解释和执行每一行代码,并更新机器状态(这会增加很多开销)。 将程序编译为机器代码时,CPU可以直接执行它。 但是,当涉及到解释器时,CPU将运行解释器,并且解释器本身将执行程序。 (如果您对编译器和解释器感兴趣,请阅读Vaidehi Joshi撰写的精彩文章)
· 这就是使Python非常灵活的原因。 Python牺牲了一点性能来提供更多的灵活性/高级编程功能(如果不使用C语言指定数据类型,则不能将变量初始化为n = 100,但是可以在Python中进行初始化)。
· JIT(Java编译器)位于C和Python之间。 首次执行代码时,将对其进行解释。 但是,当一段代码频繁执行时,它会实时编译为机器代码,并且进一步的执行将使用编译后的版本。
本文的灵感来自Charles E. Leiserson教授关于性能工程的演讲,我修改了他使用的源代码以满足我的要求。
我用来运行实验的机器的配置[处理器:Intel(R)Core(TM)i7–5500U CPU @ 2.40GHz,RAM:12Gb DDR3,OS:Ubuntu 18.04.4]
(本文翻译自Gunavaran Brihadiswaran的文章《A Performance Comparison Between C, Java, and Python》,参考:
https://medium.com/swlh/a-performance-comparison-between-c-java-and-python-df3890545f6d)
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
