利用机器学习,进行人体33个2D姿态检测与评估
off999 2025-07-28 19:39 3 浏览 0 评论
前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估
通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制,还可以在增强现实中将数字内容和信息覆盖在物理世界之上。
MediaPipe Pose是用于高保真人体姿势跟踪的ML解决方案,利用BlazePose研究成果,还从ML Kit Pose Detection API中获得了RGB视频帧的整个33个2D标志(或25个上身标志)。当前最先进的方法主要依靠强大的桌面环境进行推理,而MediaPipe Pose的方法可在大多数现代手机,,甚至是Web上实现实时性能。
ML管道
该解决方案利用两步检测器-跟踪器ML管线,管道首先使用检测器在帧内定位人/姿势感兴趣区域(ROI)。跟踪器随后使用ROI裁剪帧作为输入来预测ROI中的姿势界标。请注意,对于视频用例,仅在需要时(即,对于第一帧)以及当跟踪器无法再识别前一帧中的人体姿势时,才调用检测器。对于其他帧,管道仅从前一帧的姿势界标中得出ROI。
人/姿势检测模型(BlazePose检测器)
该检测器的灵感来自于轻型模型,该模型用于,作为器的代理。它明确预测了另外两个虚拟关键点,这些关键点将人体的中心,旋转和缩放牢牢地描述为一个圆圈。,我们预测了人的臀部的中点,外接整个人的圆的半径以及连接肩部和臀部中点的直线的倾斜角度。
姿势地标模型(BlazePose跟踪器)
管道的姿态估计组件预测所有33个人关键点的位置,每个关键点具有三个自由度(x,y位置和可见性)以及上述两个虚拟对齐关键点。与当前采用计算密集型预测的方法不同,我们的模型使用回归方法,该方法由所有关键点的组合热图/偏移量预测进行监督,如下所示。
MediaPipe Pose中的地标模型有两个版本:可以预测33个姿势地标位置的全身模型(请参见下图),以及仅预测前25个姿势的上身模型。后者可能比前25个更为准确。前者主要用于下半身不可见的场景。
python代码实现人体姿态检测
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
这里我们跟人脸468点检测与人手28点检测类似,首先我们需要建立一个人体姿态评估器mp_pose = mp.solutions.pose
然后建立一个mp_drawing.DrawingSpec画图器,这个是设置画图的颜色,大小以及线的粗细参数,可以参考往期的人脸468点检测与人手28点检测中的关于此函数的介绍
pose = mp_pose.Pose(
static_image_mode=True, min_detection_confidence=0.5)
file = 'images/4.jpg'
image = cv2.imread(file)
image_hight, image_width, _ = image.shape
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
然后我们使用mp_pose.Pose函数设置检测的参数,其主要参数如下:
查看了原始代码,此函数没有设置多人的参数,不知道为何(官方有待改进),这个需要官方进行改进一下
STATIC_IMAGE_MODE
如果设置为false,则解决方案会将输入图像视为视频流。它将尝试在最开始的图像中检测出最杰出的人物,并在成功检测后进一步定位姿势地标。然后,在随后的图像中,它就减少了计算量和等待时间,而无需调用另一次检测就一直跟踪那些界标,直到失去跟踪为止。如果设置为true,人员检测将运行每个输入图像,非常适合处理一批静态的,可能不相关的图像。默认为false。
UPPER_BODY_ONLY
如果设置为true,则解决方案仅输出25个上身姿势界标。否则,它将输出33个姿势地标的完整集合。请注意,对于大多数下半身看不见的用例,仅上半身的预测可能更准确。默认为false。
SMOOTH_LANDMARKS
如果设置为true,则解决方案过滤器会在不同的输入图像上摆出界标以减少抖动,但是如果将static_image_mode也设置为true,则将其忽略。默认为true。
MIN_DETECTION_CONFIDENCE
[0.0, 1.0]来自人员检测模型的最小置信度值()被认为是成功的检测。默认为0.5。
MIN_TRACKING_CONFIDENCE
[0.0, 1.0]来自地标跟踪模型的姿势地标的最小置信度值()将被视为已成功跟踪,否则将在下一个输入图像上自动调用人的检测。将其设置为更高的值可以提高解决方案的健壮性,但代价是更高的延迟。如果是true,则忽略位置,其中人检测仅在每个图像上运行。默认为0.5。
POSE_LANDMARKS
姿势地标列表。每个标记包括以下内容:
· x和y:[0.0, 1.0]分别由图像宽度和高度归一化为的地标坐标。
· z:应该丢弃,因为当前尚未对模型进行充分的训练来预测深度,但这是路线图上的事情。
· visibility:一个值,用于[0.0, 1.0]指示界标在图像中可见(存在且未被遮挡)的可能性。
设置完成后,我们读取一张需要检测的照片,这里设置static_image_mode=True来检测图片,然后转换图片到RGB 颜色空间,使用pose.process函数检测图片的人体姿态,其结果保存在results中
print(
f'Nose coordinates: ('
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_hight})'
)
# Draw pose landmarks on the image.
annotated_image = image.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec1)
cv2.imshow('annotated_image',annotated_image)
cv2.waitKey(0)
cv2.imwrite('images/pose11.png', annotated_image)
pose.close()
这里由于pose检测器默认只检测一个人,所以这里不再需要for循环来遍历检测的结果(关于多人的检测我们后期使用OpenCV来实现)
我们直接打印results中的坐标结果,并使用mp_drawing.draw_landmarks函数把检测到的坐标进行连线,最后进行检测结果的保存以便后期分析查看。
Python代码实现实时视频人体姿态检测
import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
pose = mp_pose.Pose(
min_detection_confidence=0.5, min_tracking_confidence=0.5)
这里跟图片检测一致,我们使用mp.solutions.pose函数建立一个pose检测器,并进行pose参数的设置,这里由于是需要检测视频,static_image_mode参数默认为false,然后使用mp_drawing.DrawingSpec建立画图设置。
cap = cv2.VideoCapture(0)
time.sleep(2)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
pose.close()
cap.release()
我们打开系统的默认摄像头,待摄像头打开后,我们使用一个死循环进行视频帧图片的截取,当截取到视频帧中的图片后,我们利用图片检测的方法进行检测,只是这里我们转换图片到RGB颜色空间后,我们使用cv.flip函数来进行图片的翻转操作,以便增强图片数据,然后使用 image.flags.writeable = False
标签标注图片不允许被修改,然后进行图片的人体姿态检测,检测完成后,由于我们需要对图片进行画图,这里重新设置image.flags.writeable = True标签,允许修改图片,最后利用mp_drawing.draw_landmarks函数对图片进行检测点的画图操作,最后实时显示到屏幕上,这样我们就可以看到完整的视频检测的结果了。
当然是用姿态评估,我们可以开发属于自己的应用,比如电视上添加摄像头,实时检测看电视人的姿态,评估是否姿态健康,以及学生上课的姿态,写字姿态等,还可以利用姿态评估对全身运动类的体育进行判断等等
对于人手以及姿态检测,我们后期使用OpenCV的方式进行代码的开发,毕竟我们需要进行多人的姿态评估
相关推荐
- Python Flask 容器化应用链路可观测
-
简介Flask是一个基于Python的轻量级Web应用框架,因其简洁灵活而被称为“微框架”。它提供了Web开发所需的核心功能,如请求处理、路由管理等,但不会强制开发者使用特定的工具或库。...
- Python GUI应用开发快速入门(python开发软件教程)
-
一、GUI开发基础1.主流GUI框架对比表1PythonGUI框架比较框架特点适用场景学习曲线Tkinter内置库,简单小型应用,快速原型平缓PyQt功能强大,商用许可专业级桌面应用陡峭PySi...
- 实战揭秘:Python Toga 打造跨平台 GUI 应用的神奇之旅
-
在Python的世界里,GUI(图形用户界面)开发工具众多,但要找到一款真正跨平台、易于使用且功能强大的工具并不容易。今天,我们就来深入探讨一下Toga——一款Python原生、操作系统原...
- python应用目录规划(python的目录)
-
Python大型应用目录结构规划(企业级最佳实践)核心原则模块化:按业务功能拆分,高内聚低耦合可扩展性:支持插件机制和动态加载环境隔离:清晰区分开发/测试/生产环境自动化:内置标准化的构建测试部署流...
- Python图形化应用开发框架:PyQt开发简介
-
PyQt概述定义:PyQt是Python绑定Qt框架的工具集,用于开发跨平台GUI应用程序原理:通过Qt的C++库提供底层功能,PyQt使用SIP工具生成Python绑定特点:支持Windows/ma...
- [python] 基于PyOD库实现数据异常检测
-
PyOD是一个全面且易于使用的Python库,专门用于检测多变量数据中的异常点或离群点。异常点是指那些与大多数数据点显著不同的数据,它们可能表示错误、噪声或潜在的有趣现象。无论是处理小规模项目还是大型...
- Python、Selenium 和 Allure 进行 UI 自动化测试的简单示例脚本
-
环境准备确保你已经安装了以下库:SeleniumAllurepytest你可以使用以下命令安装所需库:pipinstallseleniumallure-pytestpytest示例代码下面的代...
- LabVIEW 与 Python 融合:打造强大测试系统的利器
-
在现代测试系统开发领域,LabVIEW和Python各自凭借独特优势占据重要地位。LabVIEW以图形化编程、仪器控制和实时系统开发能力见长;Python则凭借丰富的库资源、简洁语法和强大数...
- 软件测试进阶之自动化测试——python+appium实例
-
扼要:1、了解python+appium进行APP的自动化测试实例;2、能根据实例进行实训操作;本课程主要讲述用python+appium对APP进行UI自动化测试的例子。appium支持Androi...
- Python openpyxl:读写样式Excel一条龙,测试报表必备!
-
无论你是测试工程师、数据分析师,还是想批量导出Excel的自动化工作者,只需一个库openpyxl,即可高效搞定Excel的各种需求!为什么选择openpyxl?支持.xlsx格式...
- Python + Pytest 测试框架——数据驱动
-
引言前面已经和大家介绍过Unittest测试框架的数据驱动框架DDT,以及其实现原理。今天和大家分享的是Pytest测试框架的数据驱动,Pytest测试框架的数据驱动是由pytest自...
- 这款开源测试神器,圆了我玩游戏不用动手的梦想
-
作者:HelloGitHub-Anthony一天我在公司用手机看游戏直播,同事问我在玩什么游戏?我和他说在看直播,他恍然大悟:原来如此,我还纳闷你玩游戏,咋不用动手呢。。。。一语惊醒梦中人:玩游戏不用...
- Python单元测试框架对比(pycharm 单元测试)
-
一、核心框架对比特性unittest(标准库)pytest(主流第三方)nose2(unittest扩展)doctest(文档测试)安装Python标准库pipinstallpytestp...
- 利用机器学习,进行人体33个2D姿态检测与评估
-
前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Python Flask 容器化应用链路可观测
- Python GUI应用开发快速入门(python开发软件教程)
- 【MCP实战】Python构建MCP应用全攻略:从入门到实战!
- 实战揭秘:Python Toga 打造跨平台 GUI 应用的神奇之旅
- python应用目录规划(python的目录)
- Python图形化应用开发框架:PyQt开发简介
- [python] 基于PyOD库实现数据异常检测
- Python、Selenium 和 Allure 进行 UI 自动化测试的简单示例脚本
- LabVIEW 与 Python 融合:打造强大测试系统的利器
- 软件测试进阶之自动化测试——python+appium实例
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)