Python Pandas 库:解锁 combine、update 和compare函数的强大功能
off999 2025-08-01 20:07 60 浏览 0 评论
在 Python 的数据处理领域,Pandas库提供了丰富且实用的函数,帮助我们高效地处理和分析数据。今天,咱们就来深入探索 Pandas 库中四个功能独特的函数:combine、combine_first、update和compare。掌握了它们,我们在数据处理的道路上将会如虎添翼!
一、combine 函数:灵活的数据合并与计算
combine函数使用func将一个 DataFrame 与另一个DataFrame 进行合并,默认按列进行合并,新生成的 DataFrame 的行索引和列索引将是这两个DataFrame 索引的并集,最后返回生成的新的DataFrame对象。
函数原型
DataFrame.combine(other, func, overwrite=True, fill_value=None) |
2. 参数详解
- other:这是要与调用者(即当前 DataFrame 或 Series)进行合并计算的另一个 DataFrame。
- func:这是一个关键参数,它是一个自定义函数,用于指定如何对两个对应元素进行计算。这个函数接收两个参数,分别是调用者和other中的对应元素,返回值则是合并后的结果。
- fill_value:指定在其中一个对象中存在缺失值时使用这个填充值,然后再做合并处理。
- overwrite:如果 overwrite=True(默认值),则在组合操作中,如果新数据(来自 other 对象)中有值,将覆盖原始数据中的对应值。如果 overwrite=False,则只有在原始数据中为缺失值(NaN 或 None)的位置,才会用新数据中的值进行填充,不会覆盖原始数据中已有的非缺失值。
3. 示例
1)定义两个没有空值的DataFrame定义一个lamada函数,然后合并
import pandas as pd
df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
print(df1)
print(df2)
take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
df3 = df1.combine(df2, take_smaller)
print(df3)
输出结果:
A B
0 0 4
1 0 4
A B
0 1 3
1 1 3
#合并的df3显示如下
A B
0 0 3
1 0 3
2)定义有空值的DataFrame,不传fill_value参数然后合并
import pandas as pd
df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
print(df1)
print(df2)
take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
df3 = df1.combine(df2, take_smaller)
print(df3)
输出结果:
A B
0 0 NaN
1 0 4.0
A B
0 1 3
1 1 3
#合并的df3显示如下,B列直接返回df1中有空值的列
A B
0 0 NaN
1 0 4.0
3)定义有空值的DataFrame,传fill_value参数然后合并
import pandas as pd
df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
print(df1)
print(df2)
take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
#指定fill_value=-1
df3 = df1.combine(df2, take_smaller,fill_value=-1)
print(df3)
输出结果:
A B
0 0 NaN
1 0 4.0
A B
0 1 3
1 1 3
#合并的df3显示如下,df1中的B列填充值之后带入函数做计算
A B
0 0 -1.0
1 0 4.0
4)定义两个没有空值的DataFrame,索引和列名不一致,对比overwrite为True和False时的输出结果
import pandas as pd
df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
df2 = pd.DataFrame({'B': [1, 1], 'C': [3, 3]}, index=[1, 2]
)
print(df1)
print(df2)
take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
df3 = df1.combine(df2, take_smaller)
print(df3)
输出结果:
A B
0 0 4
1 0 4
B C
1 3 -10
2 3 1
#合并的df3显示如下
A B C
0 NaN NaN NaN
1 NaN 3.0 -10.0
2 NaN 3.0 1.0
df3的A列因为df2无A列,填充的都为NAN值,索引为0的B列和C列填充的为NAN值
当overwrite=False时:
df3 = df1.combine(df2, take_smaller,overwrite=False)
print(df3)
输出结果为:df3的A列索引为0和1的位置并没有填充为df2的NAN值,而是填充的df1的值。
A B C
0 0.0 NaN NaN
1 0.0 3.0 -10.0
2 NaN 3.0 1.0
二、combine_first 函数:填充缺失值的利器
combine_first函数主要用于将两个 DataFrame 进行合并,用一个对象中的非缺失值去填充另一个对象中的缺失值,并返回这个新的DataFrame对象。
函数原型
参数other为另一个被合并的DataFrame对象。
使用方式类似:df.combine_first(other)
示例
设置两个 DataFrame,一个DataFrame有缺失值,进行合并
import pandas as pd
import numpy as np
# 创建示例 DataFrame
df1 = pd.DataFrame({'A': [1, np.nan, 3], 'B': [4, np.nan, 6]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})
print(df1)
print(df2)
# 使用 combine_first 函数
result = df1.combine_first(df2)
print(result)
输出结果:df1中的NAN值被df2中的值填充
A B
0 1.0 4.0
1 NaN NaN
2 3.0 6.0
A B
0 7 10
1 8 11
2 9 12
#合并后的结果
A B
0 1.0 4.0
1 8.0 11.0
2 3.0 6.0
三、update 函数:选择性的数据更新
update函数用于根据条件对 DataFrame 中的数据进行更新,它会用另一个 DataFrame 中的数据替换调用者中匹配索引和列的数据,不会返回新的DataFrame对象。
1. 函数原型
DataFrame.update(other, join='left', overwrite=True, filter_func=None,errors='ignore') |
2. 参数详解
- other:用来更新当前 DataFrame 的另一个 DataFrame ,它的索引和列需要与调用者有一定的匹配关系。
- join:指定连接方式,'left'(默认值)表示左连接,只更新调用者中存在的索引和列的数据;不支持其他连接方式。
- overwrite:布尔值,默认为True,表示覆盖匹配到的原有的数据。如果为False,则只更新当前DataFrame的缺失值。
- filter_func:一个可选的函数,用于过滤要更新的数据。它接收一个 DataFrame 作为参数,返回一个布尔类型的 DataFrame,只有对应为True的位置的数据才会被更新。
- errors:指定如何处理错误。'ignore' (默认值)表示忽略错误并继续执行,'raise' 表示遇到错误时抛出异常。
3. 示例
1)有两个DataFrame,df1有缺失值,配置参数overwrite=False,只更新df1中的缺失值
import pandas as pd
import numpy as np
# 创建示例 DataFrame
df1 = pd.DataFrame({'A': [1, np.nan, 3], 'B': [4, np.nan, 6],'C': [5, 8, 9]}, index=[1, 2, 3])
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})
print(df1)
print(df2)
# 使用 update 函数更新df1
df1.update(df2,overwrite=False)
print(df1)
输出结果:因为两个DataFrame索引和列数都不完全一致,只匹配到索引为1和2的A列和B列。
因此只有第2行的A列和B列原先为NAN值,被df2中的值更新,其他数据都不更新
A B C
1 1.0 4.0 5
2 NaN NaN 8
3 3.0 6.0 9
A B
0 7 10
1 8 11
2 9 12
#更新后的值
A B C
1 1.0 4.0 5
2 9.0 12.0 8
3 3.0 6.0 9
如果overwrite=True,则输出结果如下:索引为1和2的A列和B列都被更新
#更新后的值
A B C
1 8.0 11.0 5
2 9.0 12.0 8
3 3.0 6.0 9
2)有两个DataFrame,df1有缺失值,添加一个lambda函数只更新偶数值
import pandas as pd
import numpy as np
# 创建示例 DataFrame
df1 = pd.DataFrame({'A': [1, np.nan, 3], 'B': [4, np.nan, 6],'C': [5, 8, 9]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})
print(df1)
print(df2)
# 使用 update 函数更新df1
df1.update(df2, filter_func=lambda x:x%2==0)
print(df1)
输出结果:更新了索引为0和2的B列中的偶数,替换为了df2中的值。
A B C
0 1.0 4 5
1 NaN 3 8
2 3.0 6 9
A B
0 7 10
1 8 11
2 9 12
#更新后的值
A B C
0 1.0 10 5
1 NaN 3 8
2 3.0 12 9
四、compare 函数:数据差异的 “放大镜”
在实际的数据工作中,compare函数的作用就是直观地展示两个DataFrame之间的不同之处,将数据差异清晰地呈现出来,就像给数据差异加上了一个 “放大镜”,让我们一眼就能捕捉到关键信息。
函数原型
DataFrame.compare(other,align_axis=1,keep_shape=False,keep_equal=False,result_names=("self","other")
2. 参数详解
- other:代表要与调用者(当前DataFrame)进行对比的另一个DataFrame,两个DataFrame需要有相同的索引和行列数,不一致会报错。
- align_axis:指定对齐轴,默认值为1(按列比较)。当设置为0时,则按行比较。
- keep_shape:布尔值,默认值为False。设置为True,则会保留原有的形状,即使某些列或行在对比中没有差异也会显示,只是填充为缺失值。
- keep_equal:布尔值,默认值为False。设置为True,会保留两个DataFrame中相等的元素,在结果中用NaN来表示相等的部分。
- result_names:表示对比差异显示的两个DataFrame的名称,默认显示为self和other。
示例
创建两个DataFrame,第一行的数据是相同的。
import pandas as pd
import numpy as np
# 创建示例 DataFrame
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [1, 4, 3], 'B': [4, 7, 8]})
print(df1)
print(df2)
输出结果:
A B
0 1 4
1 2 5
2 3 6
A B
0 1 4
1 4 7
2 3 8
示例 1:使用 compare 函数,设置 result_names=('df1','df2')
diff_df = df1.compare(df2,result_names=('df1','df2'))
print(diff_df)
输出结果:
A B
df1 df2 df1 df2
1 2.0 4.0 5.0 7.0
2 NaN NaN 6.0 8.0
示例 2:使用 compare 函数,设置align_axis=0按行比较
diff_df_axis = df1.compare(df2,align_axis=0)
print(diff_df_axis)
输出结果:
A B
1 self 2.0 5.0
other 4.0 7.0
2 self NaN 6.0
other NaN 8.0
示例 3:使用 compare 函数,设置 keep_shape=True
diff_df_keep_shape = df1.compare(df2, keep_shape=True)
print(diff_df_keep_shape)
输出结果:
A B
self other self other
0 NaN NaN NaN NaN
1 2.0 4.0 5.0 7.0
2 NaN NaN 6.0 8.0
示例 4:使用 compare 函数,设置 keep_equal=True
diff_df_keep_equal = df1.compare(df2, keep_equal=True)
print(diff_df_keep_equal)
输出结果:
A B
self other self other
1 2 4 5 7
2 3 3 6 8
共勉: 东汉·班固《汉书·枚乘传》:“泰山之管穿石,单极之绠断干。水非石之钻,索非木之锯,渐靡使之然也。”
-----指水滴不断地滴,可以滴穿石头;
-----比喻坚持不懈,集细微的力量也能成就难能的功劳。
----感谢读者的阅读和学习,谢谢大家。
相关推荐
- 大文件传不动?WinRAR/7-Zip 入门到高手,这 5 个技巧让你效率翻倍
-
“这200张照片怎么传给女儿?微信发不了,邮箱附件又超限……”62岁的张阿姨对着电脑犯愁时,儿子只用了3分钟就把照片压缩成一个文件,还教她:“以后用压缩软件,比打包行李还方便!”职场人更懂这...
- 电脑解压缩软件推荐——7-Zip:免费、高效、简洁的文件管理神器
-
在日常工作中,我们经常需要处理压缩文件。无论是下载软件包、接收文件,还是存储大量数据,压缩和解压缩文件都成为了我们日常操作的一部分。而说到压缩解压软件,7-Zip绝对是一个不可忽视的名字。今天,我就来...
- 设置了加密密码zip文件要如何打开?这几个方法可以试试~
-
Zip是一种常见的压缩格式文件,文件还可以设置密码保护。那设置了密码的Zip文件要如何打开呢?不清楚的小伙伴一起来看看吧。当我们知道密码想要打开带密码的Zip文件,我们需要用到适用于Zip格式的解压缩...
- 大文件想要传输成功,怎么把ZIP文件分卷压缩
-
不知道各位小伙伴有没有这样的烦恼,发送很大很大的压缩包会受到限制,为此,想要在压缩过程中将文件拆分为几个压缩包并且同时为所有压缩包设置加密应该如何设置?方法一:使用7-Zip免费且强大的文件管理工具7...
- 高效处理 RAR 分卷压缩包:合并解压操作全攻略
-
在文件传输和存储过程中,当遇到大文件时,我们常常会使用分卷压缩的方式将其拆分成多个较小的压缩包,方便存储和传输。RAR作为一种常见的压缩格式,分卷压缩包的使用频率也很高。但很多人在拿到RAR分卷...
- 2个方法教你如何删除ZIP压缩包密码
-
zip压缩包设置了加密密码,每次解压文件都需要输入密码才能够顺利解压出文件,当压缩包文件不再需要加密的时候,大家肯定想删除压缩包密码,或是忘记了压缩包密码,想要通过删除操作将压缩包密码删除,就能够顺利...
- 速转!漏洞预警丨压缩软件Winrar目录穿越漏洞
-
WinRAR是一款功能强大的压缩包管理器,它是档案工具RAR在Windows环境下的图形界面。该软件可用于备份数据,缩减电子邮件附件的大小,解压缩从Internet上下载的RAR、ZIP及其它类...
- 文件解压方法和工具分享_文件解压工具下载
-
压缩文件减少文件大小,降低文件失效的概率,总得来说好处很多。所以很多文件我们下载下来都是压缩软件,很多小伙伴不知道怎么解压,或者不知道什么工具更好,所以今天做了文件解压方法和工具的分享给大家。一、解压...
- [python]《Python编程快速上手:让繁琐工作自动化》学习笔记3
-
1.组织文件笔记(第9章)(代码下载)1.1文件与文件路径通过importshutil调用shutil模块操作目录,shutil模块能够在Python程序中实现文件复制、移动、改名和删除;同时...
- Python内置tarfile模块:读写 tar 归档文件详解
-
一、学习目标1.1学习目标掌握Python内置模块tarfile的核心功能,包括:理解tar归档文件的原理与常见压缩格式(gzip/bz2/lzma)掌握tar文件的读写操作(创建、解压、查看、过滤...
- 使用python展开tar包_python拓展
-
类Unix的系统,打包文件经常使用的就是tar包,结合zip工具,可以方便的打包并解压。在python的标准库里面有tarfile库,可以方便实现生成了展开tar包。使用这个库最大的好处,可能就在于不...
- 银狐钓鱼再升级:白文件脚本化实现GO语言后门持久驻留
-
近期,火绒威胁情报中心监测到一批相对更为活跃的“银狐”系列变种木马。火绒安全工程师第一时间获取样本并进行分析。分析发现,该样本通过阿里云存储桶下发恶意文件,采用AppDomainManager进行白利...
- ZIP文件怎么打开?2个简单方法教你轻松搞定!
-
在日常工作和生活中,我们经常会遇到各种压缩文件,其中最常见的格式之一就是ZIP。ZIP文件通过压缩数据来减少文件大小,方便我们进行存储和传输。然而,对于初学者来说,如何打开ZIP文件可能会成为一个小小...
- Ubuntu—解压多个zip压缩文件.zip .z01 .z02
-
方法将所有zip文件放在同一目录中:zip_file.z01,zip_file.z02,zip_file.z03,...,zip_file.zip。在Zip3.0版本及以上,使用下列命令:将所有zi...
- 如何使用7-Zip对文件进行加密压缩
-
7-Zip是一款开源的文件归档工具,支持多种压缩格式,并提供了对压缩文件进行加密的功能。使用7-Zip可以轻松创建和解压.7z、.zip等格式的压缩文件,并且可以通过设置密码来保护压缩包中的...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)