Python数据可视化:从Pandas基础到Seaborn高级应用
off999 2025-08-02 21:09 45 浏览 0 评论
数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。
Pandas内置绘图功能
Pandas基于Matplotlib提供了简洁的绘图接口,适合快速数据探索。
基础绘图方法
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 创建示例数据
np.random.seed(42)
df = pd.DataFrame({
'A': np.random.randn(100).cumsum(),
'B': np.random.rand(100) * 50,
'C': np.random.randint(0, 20, 100)
}, index=pd.date_range('2023-01-01', periods=100))
# 线图
df['A'].plot(title='线图示例', figsize=(10, 4))
plt.ylabel('数值')
plt.show()
多种图表类型
# 柱状图
df['C'].value_counts().sort_index().plot.bar(
title='频数统计柱状图',
color='skyblue',
alpha=0.7
)
plt.xticks(rotation=0)
plt.show()
# 面积图
df[['A', 'B']].plot.area(
title='面积图示例',
alpha=0.4,
figsize=(10, 5)
)
plt.show()
# 散点图
df.plot.scatter(
x='A',
y='B',
title='A与B的散点图',
c='C', # 使用C列作为颜色维度
cmap='viridis',
alpha=0.6
)
plt.show()
多子图绘制
# 创建多子图
axes = df.plot.line(
subplots=True,
layout=(2, 2),
figsize=(12, 8),
title=['A列', 'B列', 'C列', '']
)
# 调整布局
plt.tight_layout()
plt.show()
Matplotlib高级绘图
虽然Pandas绘图很方便,但Matplotlib提供了更精细的控制。
自定义图形样式
# 创建画布和坐标系
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制多条线
ax.plot(df.index, df['A'],
label='趋势线',
color='blue',
linestyle='--',
linewidth=2)
ax.scatter(df.index, df['B'],
label='随机点',
color='red',
alpha=0.6)
# 添加图形元素
ax.set(title='自定义样式示例',
xlabel='日期',
ylabel='数值')
ax.legend()
ax.grid(True, linestyle=':', alpha=0.6)
# 调整坐标轴
ax.set_xlim(df.index.min(), df.index.max())
plt.xticks(rotation=45)
plt.show()
复杂图形组合
# 创建组合图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
# 上部:折线图
ax1.plot(df.index, df['A'], 'g-', label='趋势')
ax1.set_ylabel('趋势值', fontsize=12)
ax1.legend(loc='upper left')
ax1.set_title('组合图表示例', fontsize=14)
# 下部:柱状图
ax2.bar(df.index, df['C'],
width=1,
color='orange',
alpha=0.7,
label='频次')
ax2.set_ylabel('频次', fontsize=12)
ax2.legend(loc='upper left')
# 调整布局
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
高级可视化技巧
# 填充区域
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(df.index, df['A'], color='blue')
ax.fill_between(df.index,
df['A'].min(),
df['A'],
where=(df['A'] > df['A'].mean()),
color='blue',
alpha=0.2,
interpolate=True)
ax.axhline(df['A'].mean(), color='red', linestyle='--')
plt.title('填充区域示例')
plt.show()Seaborn统计可视化
Seaborn基于Matplotlib,提供了更高级的统计图形接口。
1. 分布可视化
Seaborn统计可视化
Seaborn基于Matplotlib,提供了更高级的统计图形接口。
分布可视化
import seaborn as sns
# 设置样式
sns.set_style("whitegrid")
sns.set_palette("husl")
# 分布图
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='A', kde=True, bins=20)
plt.title('分布直方图')
plt.show()
# 核密度估计
plt.figure(figsize=(10, 6))
sns.kdeplot(data=df, x='A', shade=True)
plt.title('核密度估计')
plt.show()
关系可视化
# 散点图矩阵
iris = sns.load_dataset('iris')
sns.pairplot(iris, hue='species', height=2.5)
plt.suptitle('鸢尾花数据集散点图矩阵', y=1.02)
plt.show()
# 热力图
corr = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr,
annot=True,
cmap='coolwarm',
center=0,
fmt=".2f")
plt.title('相关系数热力图')
plt.show()
分类数据可视化
# 箱线图
tips = sns.load_dataset('tips')
plt.figure(figsize=(10, 6))
sns.boxplot(x='day', y='total_bill', hue='sex', data=tips)
plt.title('每日消费箱线图')
plt.show()
# 小提琴图
plt.figure(figsize=(10, 6))
sns.violinplot(x='day', y='total_bill',
hue='sex',
split=True,
data=tips)# 创建模拟电商数据
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2023-12-31')
categories = ['Electronics', 'Clothing', 'Home', 'Books']
data = {
'Date': np.random.choice(dates, 500),
'Category': np.random.choice(categories, 500),
'Sales': np.random.randint(50, 500, 500),
'Profit': np.random.randn(500).cumsum() * 100 + 1000
}
ecom_df = pd.DataFrame(data)
# 1. 月度销售趋势分析
monthly_sales = ecom_df.groupby(
[ecom_df['Date'].dt.month_name(), 'Category']
)['Sales'].sum().unstack()
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='area', alpha=0.6, stacked=True)
plt.title('分品类月度销售趋势')
plt.ylabel('销售额')
plt.xticks(rotation=45)
plt.legend(title='品类')
plt.tight_layout()
plt.show()
# 2. 利润分布分析
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.boxplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润分布')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
sns.violinplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润密度')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. 销售-利润关系分析
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Sales', y='Profit',
hue='Category',
size='Sales',
sizes=(20, 200),
alpha=0.7,
data=ecom_df)
plt.title('销售-利润关系气泡图')
plt.show()
plt.title('每日消费小提琴图')
plt.show()
实战案例:电商数据分析
# 创建模拟电商数据
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2023-12-31')
categories = ['Electronics', 'Clothing', 'Home', 'Books']
data = {
'Date': np.random.choice(dates, 500),
'Category': np.random.choice(categories, 500),
'Sales': np.random.randint(50, 500, 500),
'Profit': np.random.randn(500).cumsum() * 100 + 1000
}
ecom_df = pd.DataFrame(data)
# 1. 月度销售趋势分析
monthly_sales = ecom_df.groupby(
[ecom_df['Date'].dt.month_name(), 'Category']
)['Sales'].sum().unstack()
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='area', alpha=0.6, stacked=True)
plt.title('分品类月度销售趋势')
plt.ylabel('销售额')
plt.xticks(rotation=45)
plt.legend(title='品类')
plt.tight_layout()
plt.show()
# 2. 利润分布分析
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.boxplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润分布')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
sns.violinplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润密度')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. 销售-利润关系分析
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Sales', y='Profit',
hue='Category',
size='Sales',
sizes=(20, 200),
alpha=0.7,
data=ecom_df)
plt.title('销售-利润关系气泡图')
plt.show()
可视化最佳实践
图表选择指南
分析目的 | 推荐图表类型 |
趋势分析 | 折线图、面积图 |
分布分析 | 直方图、箱线图、小提琴图 |
关系分析 | 散点图、气泡图、热力图 |
构成分析 | 堆叠柱状图、饼图(少量类别) |
比较分析 | 柱状图、雷达图 |
样式优化技巧
# 设置全局样式
plt.style.use('seaborn') # 可选: ggplot, seaborn, fivethirtyeight等
# 创建专业图表
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制内容
sns.lineplot(data=df, x=df.index, y='A', ax=ax, label='趋势')
# 优化样式
ax.set_title('专业图表示例', fontsize=14, pad=20)
ax.set_xlabel('日期', fontsize=12)
ax.set_ylabel('数值', fontsize=12)
ax.tick_params(axis='both', which='major', labelsize=10)
ax.legend(fontsize=10, framealpha=0.9)
# 添加注释
ax.annotate('峰值点',
xy=(df['A'].idxmax(), df['A'].max()),
xytext=(20, 20),
textcoords='offset points',
arrowprops=dict(arrowstyle='->'))
# 调整边距
plt.tight_layout()
plt.show()
性能优化
# 大数据集优化
large_df = pd.DataFrame(np.random.randn(100000, 3),
columns=['A', 'B', 'C'])
# 方法1: 采样
sample_df = large_df.sample(1000)
# 方法2: 使用hexbin替代散点图
plt.figure(figsize=(10, 6))
plt.hexbin(large_df['A'], large_df['B'], gridsize=50, cmap='Blues')
plt.colorbar(label='频数')
plt.title('大数据集hexbin图')
plt.show()
总结与进阶
工具对比
特性 | Pandas | Matplotlib | Seaborn |
易用性 | |||
灵活性 | |||
统计功能 | |||
默认美观度 |
进阶方向
# 1. 交互式可视化
# from plotly.express import scatter
# fig = scatter(df, x='A', y='B', color='C')
# 2. 地理空间可视化
# import geopandas as gpd
# world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
# 3. 3D可视化
# from mpl_toolkits.mplot3d import Axes3D
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
掌握这些可视化技术后,我们可以有效探索和展示数据中的模式和见解。记住,好的可视化应该既美观又能清晰传达信息。
实践是提高可视化技能的最佳方式,建议大家从实际数据集开始,不断尝试不同的图表类型和样式。
相关推荐
- Alist 玩家请进:一键部署全新分支 Openlist,看看香不香!
-
Openlist(其前身是鼎鼎大名的Alist)是一款功能强大的开源文件列表程序。它能像“万能钥匙”一样,解锁并聚合你散落在各处的云盘资源——无论是阿里云盘、百度网盘、GoogleDrive还是...
- 白嫖SSL证书还自动续签?这个开源工具让我告别手动部署
-
你还在手动部署SSL证书?你是不是也遇到过这些问题:每3个月续一次Let'sEncrypt证书,忘了就翻车;手动配置Nginx,重启服务,搞一次SSL得花一下午;付费证书太贵,...
- Docker Compose:让多容器应用一键起飞
-
CDockerCompose:让多容器应用一键起飞"曾经我也是一个手动启动容器的少年,直到我的膝盖中了一箭。"——某位忘记--link参数的运维工程师引言:容器化的烦恼与...
- 申请免费的SSL证书,到期一键续签
-
大家好,我是小悟。最近帮朋友配置网站HTTPS时发现,还有人对宝塔面板的SSL证书功能还不太熟悉。其实宝塔早就内置了免费的Let'sEncrypt证书申请和一键续签功能,操作简单到连新手都能...
- 飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
前面分享了两期TVGate:Q大的转发代理工具TVGate升级了,操作更便捷,增加了新的功能跨平台内网转发神器TVGate部署与使用初体验现在项目已经开源,并支持Docker部署,本文介绍如何通...
- Docker Compose 编排实战:一键部署多容器应用!
-
当项目变得越来越复杂,一个服务已经无法满足需求时,你可能需要同时部署数据库、后端服务、前端网页、缓存组件……这时,如果还一个一个手动dockerrun,简直是灾难这就是DockerCompo...
- 深度测评:Vue、React 一键部署的神器 PinMe
-
不知道大家有没有这种崩溃瞬间:领导突然要看项目Demo,客户临时要体验新功能,自己写的小案例想发朋友圈;找运维?排期?还要走工单;自己买服务器?域名、SSL、Nginx、防火墙;本地起服务?断电、关...
- 超简单!一键启动多容器,解锁 Docker Compose 极速编排秘籍
-
想要用最简单的方式在本地复刻一套完整的微服务环境?只需一个docker-compose.yml文件,你就能一键拉起N个容器,自动组网、挂载存储、环境隔离,全程无痛!下面这份终极指南,教你如何用...
- 日志文件转运工具Filebeat笔记_日志转发工具
-
一、概述与简介Filebeat是一个日志文件转运工具,在服务器上以轻量级代理的形式安装客户端后,Filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停的读),并将来自...
- K8s 日志高效查看神器,提升运维效率10倍!
-
通常情况下,在部署了K8S服务之后,为了更好地监控服务的运行情况,都会接入对应的日志系统来进行检测和分析,比如常见的Filebeat+ElasticSearch+Kibana这一套组合...
- 如何给网站添加 https_如何给网站添加证书
-
一、简介相信大家都知道https是更加安全的,特别是一些网站,有https的网站更能够让用户信任访问接下来以我的个人网站五岁小孩为例子,带大家一起从0到1配置网站https本次配置的...
- 10个Linux文件内容查看命令的实用示例
-
Linux文件内容查看命令30个实用示例详细介绍了10个Linux文件内容查看命令的30个实用示例,涵盖了从基本文本查看、分页浏览到二进制文件分析的各个方面。掌握这些命令帮助您:高效查看各种文本文件内...
- 第13章 工程化实践_第13章 工程化实践课
-
13.1ESLint+Prettier代码规范统一代码风格配置//.eslintrc.jsmodule.exports={root:true,env:{node...
- 龙建股份:工程项目中标_龙建股份有限公司招聘网
-
404NotFoundnginx/1.6.1【公告简述】2016年9月8日公告,公司于2016年9月6日收到苏丹共和国(简称“北苏丹”)喀土穆州基础设施与运输部公路、桥梁和排水公司出具的中标通知书...
- 福田汽车:获得政府补助_福田 补贴
-
404NotFoundnginx/1.6.1【公告简述】2016年9月1日公告,自2016年8月17日至今,公司共收到产业发展补助、支持资金等与收益相关的政府补助4笔,共计5429.08万元(不含...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)