百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

【Python深度学习系列】基于Flask将深度学习模型部署到web应用上

off999 2025-08-06 22:29 2 浏览 0 评论

这是我的第356篇原创文章。

一、引言

使用 Flask 在 10 分钟内将您自己训练的模型或预训练的模型(VGG、ResNet、Densenet)部署到网络应用程序中。以图像分类模型为例,本地直接部署和本地使用docker部署两种方式实现。

二、实现过程

2.1 准备模型

这里我们使用
tf.keras.applications.MobileNetV2 作为基础模型,MobileNet V2模型由Google开发,此模型已基于 ImageNet 数据集进行预训练,ImageNet 数据集是一个包含 140 万个图像和 1000 个类的大型数据集。ImageNet 是一个研究训练数据集,具有各种各样的类别,例如 jackfruit 和 syringe。此知识库将帮助我们对特定数据集中的猫和狗进行分类。

实例化一个已预加载基于 ImageNet 训练的权重的 MobileNet V2 模型:

from keras.applications.mobilenet_v2 import MobileNetV2
model = MobileNetV2(weights='imagenet')
print('Model loaded. Check http://127.0.0.1:5000/')

当然,你也可以用你自己训练好的模型,训练好的模型放在项目的models文件夹下面:

然后采用下面的代码进行加载模型:

MODEL_PATH = 'models/cats_and_dogs_small.h5'
model = load_model(MODEL_PATH)
model._make_predict_function()          # Necessary
print('Model loaded. Start serving...')

2.2 本地部署

app.py:

import os
import sys

# Flask
from flask import Flask, redirect, url_for, request, render_template, Response, jsonify, redirect
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image

# Some utilites
import numpy as np
from util import base64_to_pil

# Declare a flask app
app = Flask(__name__)


# You can use pretrained model from Keras
# Check https://keras.io/applications/
# or https://www.tensorflow.org/api_docs/python/tf/keras/applications

from keras.applications.mobilenet_v2 import MobileNetV2
model = MobileNetV2(weights='imagenet')
print('Model loaded. Check http://127.0.0.1:5000/')

# Model saved with Keras model.save()
# MODEL_PATH = 'models/cats_and_dogs_small.h5'

# Load your own trained model
# model = load_model(MODEL_PATH)
# model._make_predict_function()          # Necessary
# print('Model loaded. Start serving...')

def model_predict(img, model):
    img = img.resize((224, 224))

    # Preprocessing the image
    x = image.image_utils.img_to_array(img)
    # x = np.true_divide(x, 255)
    x = np.expand_dims(x, axis=0)

    # Be careful how your trained model deals with the input
    # otherwise, it won't make correct prediction!
    x = preprocess_input(x, mode='tf')

    preds = model.predict(x)
    return preds


@app.route('/', methods=['GET'])
def index():
    # Main page
    return render_template('index.html')


@app.route('/predict', methods=['GET', 'POST'])
def predict():
    if request.method == 'POST':
        # Get the image from post request
        img = base64_to_pil(request.json)

        # Save the image to ./uploads
        # img.save("./uploads/image.png")

        # Make prediction
        preds = model_predict(img, model)

        # Process your result for human
        pred_proba = "{:.3f}".format(np.amax(preds))    # Max probability
        pred_class = decode_predictions(preds, top=1)   # ImageNet Decode

        result = str(pred_class[0][0][1])               # Convert to string
        result = result.replace('_', ' ').capitalize()
        
        # Serialize the result, you can add additional fields
        return jsonify(result=result, probability=pred_proba)

    return None


if __name__ == '__main__':
    # app.run(port=5002, threaded=False)

    # Serve the app with gevent
    http_server = WSGIServer(('0.0.0.0', 5000), app)
    http_server.serve_forever()

2.2 docker部署

编写dockerfile:

FROM python:3.9.0
COPY . D:/workspace/github_proj/Data-Miscellany-Forum/src/深度学习模型部署-RESTfulAPI/keras-flask-deploy-webapp
WORKDIR D:/workspace/github_proj/Data-Miscellany-Forum/src/深度学习模型部署-RESTfulAPI/keras-flask-deploy-webapp
# Install dependencies
RUN pip install -r requirements.txt
# Run the application on port 5000
EXPOSE 5000
CMD ["python", "app.py"]

创建镜像:

docker build -t keras_flask_app .

启动容器:

docker run -it --rm -p 5000:5000 keras_flask_app

三、小结

打开浏览器,输入127.0.0.1:5000,导入一张图片进行分类预测:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python深度学习系列】基于Flask将深度学习模型部署到web应用上(完整案例)

相关推荐

让 Python 代码飙升330倍:从入门到精通的四种性能优化实践

花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...

7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制

“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...

Python3.14:终于摆脱了GIL的限制

前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...

Python Web开发实战:3小时从零搭建个人博客

一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...

图解Python编程:从入门到精通系列教程(附全套速查表)

引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...

Python 并发编程实战:从基础到实战应用

并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...

吴恩达亲自授课,适合初学者的Python编程课程上线

吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...

Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件

在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...

Python turtle模块编程实践教程

一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...

Python 中的asyncio 编程入门示例-1

Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...

30天学会Python,开启编程新世界

在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...

Python基础知识(IO编程)

1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...

Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!

Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...

一文带你了解Python Socket 编程

大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...

Python-面向对象编程入门

面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...

取消回复欢迎 发表评论: