百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

【Python深度学习系列】基于Flask将深度学习模型部署到web应用上

off999 2025-08-06 22:29 42 浏览 0 评论

这是我的第356篇原创文章。

一、引言

使用 Flask 在 10 分钟内将您自己训练的模型或预训练的模型(VGG、ResNet、Densenet)部署到网络应用程序中。以图像分类模型为例,本地直接部署和本地使用docker部署两种方式实现。

二、实现过程

2.1 准备模型

这里我们使用
tf.keras.applications.MobileNetV2 作为基础模型,MobileNet V2模型由Google开发,此模型已基于 ImageNet 数据集进行预训练,ImageNet 数据集是一个包含 140 万个图像和 1000 个类的大型数据集。ImageNet 是一个研究训练数据集,具有各种各样的类别,例如 jackfruit 和 syringe。此知识库将帮助我们对特定数据集中的猫和狗进行分类。

实例化一个已预加载基于 ImageNet 训练的权重的 MobileNet V2 模型:

from keras.applications.mobilenet_v2 import MobileNetV2
model = MobileNetV2(weights='imagenet')
print('Model loaded. Check http://127.0.0.1:5000/')

当然,你也可以用你自己训练好的模型,训练好的模型放在项目的models文件夹下面:

然后采用下面的代码进行加载模型:

MODEL_PATH = 'models/cats_and_dogs_small.h5'
model = load_model(MODEL_PATH)
model._make_predict_function()          # Necessary
print('Model loaded. Start serving...')

2.2 本地部署

app.py:

import os
import sys

# Flask
from flask import Flask, redirect, url_for, request, render_template, Response, jsonify, redirect
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image

# Some utilites
import numpy as np
from util import base64_to_pil

# Declare a flask app
app = Flask(__name__)


# You can use pretrained model from Keras
# Check https://keras.io/applications/
# or https://www.tensorflow.org/api_docs/python/tf/keras/applications

from keras.applications.mobilenet_v2 import MobileNetV2
model = MobileNetV2(weights='imagenet')
print('Model loaded. Check http://127.0.0.1:5000/')

# Model saved with Keras model.save()
# MODEL_PATH = 'models/cats_and_dogs_small.h5'

# Load your own trained model
# model = load_model(MODEL_PATH)
# model._make_predict_function()          # Necessary
# print('Model loaded. Start serving...')

def model_predict(img, model):
    img = img.resize((224, 224))

    # Preprocessing the image
    x = image.image_utils.img_to_array(img)
    # x = np.true_divide(x, 255)
    x = np.expand_dims(x, axis=0)

    # Be careful how your trained model deals with the input
    # otherwise, it won't make correct prediction!
    x = preprocess_input(x, mode='tf')

    preds = model.predict(x)
    return preds


@app.route('/', methods=['GET'])
def index():
    # Main page
    return render_template('index.html')


@app.route('/predict', methods=['GET', 'POST'])
def predict():
    if request.method == 'POST':
        # Get the image from post request
        img = base64_to_pil(request.json)

        # Save the image to ./uploads
        # img.save("./uploads/image.png")

        # Make prediction
        preds = model_predict(img, model)

        # Process your result for human
        pred_proba = "{:.3f}".format(np.amax(preds))    # Max probability
        pred_class = decode_predictions(preds, top=1)   # ImageNet Decode

        result = str(pred_class[0][0][1])               # Convert to string
        result = result.replace('_', ' ').capitalize()
        
        # Serialize the result, you can add additional fields
        return jsonify(result=result, probability=pred_proba)

    return None


if __name__ == '__main__':
    # app.run(port=5002, threaded=False)

    # Serve the app with gevent
    http_server = WSGIServer(('0.0.0.0', 5000), app)
    http_server.serve_forever()

2.2 docker部署

编写dockerfile:

FROM python:3.9.0
COPY . D:/workspace/github_proj/Data-Miscellany-Forum/src/深度学习模型部署-RESTfulAPI/keras-flask-deploy-webapp
WORKDIR D:/workspace/github_proj/Data-Miscellany-Forum/src/深度学习模型部署-RESTfulAPI/keras-flask-deploy-webapp
# Install dependencies
RUN pip install -r requirements.txt
# Run the application on port 5000
EXPOSE 5000
CMD ["python", "app.py"]

创建镜像:

docker build -t keras_flask_app .

启动容器:

docker run -it --rm -p 5000:5000 keras_flask_app

三、小结

打开浏览器,输入127.0.0.1:5000,导入一张图片进行分类预测:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python深度学习系列】基于Flask将深度学习模型部署到web应用上(完整案例)

相关推荐

android13正式版下载(安卓版本13)

出现该问题的原因是,用户在设置里开启了新下载的APP,仅添加到APP资源库选项。大家只要进入“设置-主屏幕”,把新下载的APP,改为“添加到主屏幕”即可解决问题。修改完成后,你再进入AppStore下...

firefox浏览器安卓版(firefox浏览器安卓版 打开本地网页)

要进入火狐浏览器手机版的主页,你可以通过以下几种方式进行:首先,打开火狐浏览器App,然后点击右上角的三条横线菜单按钮,接着选择“主页”选项。另外,你也可以直接在浏览器地址栏中输入“about:hom...

电脑cpu性能排行榜天梯图(“电脑cpu性能天梯图”)

一、英特尔酷睿i7670。这款英特尔CPU采用的是超频新芯,最大程度的提升处理器的超频能力。二、英特尔酷睿i74790kCPU:这款CPU采用22纳米制程工艺的框架,它的默认频率是4.0到4.4Ghz...

硬盘怎么分区合理(硬盘怎么分区合理一点)
  • 硬盘怎么分区合理(硬盘怎么分区合理一点)
  • 硬盘怎么分区合理(硬盘怎么分区合理一点)
  • 硬盘怎么分区合理(硬盘怎么分区合理一点)
  • 硬盘怎么分区合理(硬盘怎么分区合理一点)
路由器怎么设置密码不被别人蹭网
  • 路由器怎么设置密码不被别人蹭网
  • 路由器怎么设置密码不被别人蹭网
  • 路由器怎么设置密码不被别人蹭网
  • 路由器怎么设置密码不被别人蹭网
电脑自由截屏的快捷键是什么

快捷键是ctrl+alt+a,我们可将聊天窗口缩小,放在旁边。然后找到想要截屏的位置,这时我们在截屏旁边,就更加的方便了。在键盘中按下PrintScreenSysRq(简写为PrtSc)键,此快捷...

windows10精简版官网下载(win10官方精简版下载)

精简版的意思的它比原版的功能和软件少了,其实精简版的更适合大众,没有多余的其他必要功能,更快Win10版本主要为四个分别是专业版、家庭版、企业版、教育版,其实除了这四个之外,还有工作站版、LTSB/L...

cad2008安装失败(Win11安装cad2008安装失败)

解决方法:1、右键点击“开始”按钮,选择“程序和功能”;2、然后点击“启用或关闭windows功能”;3、勾选“Microsoft.NETFramework3.5(包括.Net2.0)”后点击确定按钮...

u盘在电脑上怎么找出来(u盘在电脑上怎么找到)

在电脑中找不到u盘,是因为系统没有自动识别出来,手动打开即可,具体的解决步骤如下:1、在桌面上点击我的电脑,右键,管理。2、打开管理界面,点击储存。3、进到储存页面。4、到这一步,也就可以看到了,有这...

联想一体机怎么进入bios(联想一体机怎么进入u盘启动)

所需工具:联想Lenovo品牌一体机、启动U盘。具体步骤如下:1、联想一体机从U盘启动设置步骤如下重启联想一体机,启动过程中按F1进入BIOS,部分机型则是开机按Enter键,进入之后再按F12选择进...

如何装ghost系统盘(ghost装机教程)

ghost是不能做系统c盘,它是一种对硬盘和分区制作成映像文件进行备份和恢复的工具软件,是不能进行操作系统安装。这个软件的使用目的是,当我们安装配置好操作系统以后,用ghost软件对c盘进行备份,或者...

加密u盘如何格式化(加密u盘如何格式化手机)

1,点击系统与安全进入电脑的控制面板界面,点击上方的系统与安全的选项,在系统界面找到最下方的管理工具功能组。2,选中u盘选择管理工具下面的创建并格式化硬盘分区,点击弹出磁盘管理的界面,在这个里面选中你...

万能显卡驱动离线版pc(万能显卡驱动离线版)

万用驱动是综合各电脑硬件的性能而制做的软件,对于大多数的电脑硬件驱动都好用,但对于少数品牌电脑驱动要求严格的,就不灵了。有的硬件用万能驱动后,使用效果不佳,就是因为没有完全驱动好。所以,知名品牌电脑硬...

如何让电脑一键还原(电脑怎样才能一键还原)
  • 如何让电脑一键还原(电脑怎样才能一键还原)
  • 如何让电脑一键还原(电脑怎样才能一键还原)
  • 如何让电脑一键还原(电脑怎样才能一键还原)
  • 如何让电脑一键还原(电脑怎样才能一键还原)
笔记本windows8系统下载(笔记本电脑系统win8)

在电脑上面就可以下载,打开浏览器搜索windous8系统会出现一些下拉选择,选择第一条或者选择有官网字样的,就直接有下载按钮,然后点击下载就可以了win8可以支持现在可以见到的所有Photosho...

取消回复欢迎 发表评论: