百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

使用python绘图库seaborn快速完成常见图表绘制,可视化技术强大

off999 2024-09-26 16:06 40 浏览 0 评论

专栏推荐

最近是在学习seaburn,觉他很强大,前面也分享了几篇文章,但是感觉知识体系特别散,很难把所有的东西串到一起,所以在写一篇文章,想把知识内容给串起来,这里不会涉及到太多的代码,和显示效果,而是总结,想看代码和效果可以去看其它的文章,将会从maplotlib开始到seaborn。

matplotlib总结

折线图:.plot(unrate["DATE"],unrate["Value"])

柱状图:.bar(unrate["DATE"],unrate["Value"])

横着的柱状图:.barh(unrate["DATE"],unrate["Value"])

散点图:.scatter(unrate["DATE"],unrate["Value"])

柱状图:.hist(norm_reviews['RT_user_norm'])

盒图指定一列:.boxplot(norm.reviews['RT_user_norm'])

盒图指定多列:

num_cols=['RT_user_norm',"Metacritic_user_norm","IMDB_norm","Fandango_Ratingvalue"]

plt.boxplot(norm_review[num_cols].values)

上面就是使用matplot画图的时的api,画完图显示是使用plt.show()来显示

在画图的时候,画图的区域是默认的,也就是画图的区域大小都是一致的,怎样可以设置画图区域的大小呢?

可以在画图之前使用

plt.figure(num = 5, figsize = (60, 4))

其中num是指的是这个绘图区域的编号,figsize赋值应该是一个元组,指定长和宽

如果只有程序中只有一个plt.figure那么这个figure设置的就是默认的区域,假如plt.plot画图的时候就会在这个画布中来画,假如有多个plt.figure(num = 4, figsize = (60, 4)),那么就会开启多个绘图区域,而plot.plot会默认在最后一个plt.figure上面来画

子图设置:

上面画图的时候只是画了一个图,那么要想画多个图,每个图想要画不同的类别那么此时可以通过子图来完成相关的工作。

画子图的时候,首先要指定整体子图有几行几列,然后编号是从左到右,从上到下的进行编号,而且还要指定自己是第几号。

下面将进行简单的代码演示:

我先设置一个画图的区域,用来画图

fig=plt.figure()不加参数就是一个默认的画图区域

然后设置子图有几行几列,显示第几个,这个设置方法有两个

方法一

ax1=fig.add_subplot(2,2,1)

ax2=fig.add_subplot(2,2,2)

ax3=fig.add_subplot(2,2,4)

方法二:

ax1=fig.subplot(221)

ax2=fig.subplot(221)

ax3=fig.subplot(221)

这样ax1,ax2.....就是一个一个的子图,就可以在子图上进行画具体想要画的图了。

这些子图都是在fig这一块画布区域上画的

方法三:

方法三也是画子图的一种方式,但是不会在当前的画布上来画,而是从新开辟一块画布,那么可以使用

这个就是不在默认的plt画布上画了,开启新的一块,plt.subplots(2,3)表示设置一块2行3列的子图区域,那么具体画哪块可以使用ax[0,1]来指定画第一行的第二列等等

以上就是画子图的三种方式,还有一点当需要从新开辟一块区域的时候,可以使用

fig,ax=plt.subplots()

ax.来画图

上面简单的总结了以下matplotlib,下面主要总结seaborn的知识点

seaborn

知识准备:

map(ord,"axis_grids")结果是:

[97,120,105,115,95,103,114,105,100,115]

就是axis_grids对应的ascii值

sum(map(ord,"axis_grids"))就是求和,结果是1069

np.random.seed(sum(map(ord,"axis_grids")))其实就是等于

np.random.seed(1069)这个表示定义一个种子,如果使用相同的seed( )值,则每次生成的随即数都相同,seed()作用只有一次

np.linespace(0,14,100)的意思就是从0到14中取出100个数,返回结果是一个列表

seaborn的使用

seaborn学习框架是这样的:

第一个:seaborn风格的学习

第二个:seaborn的调色板

第三个:分布数据集的可视化:单变量分析绘图和多变量分析绘图

第四个:线性关系可视化

第五个:分类关系的可视化

第一个:

Seaborn将matplotlib参数分成两个独立的组。第一组设定了美学风格,第二组则是不同的度量元素,这样就可以很容易地添加到代码当中了。

操作这些参数的接口是两对函数。为了控制样式,使用axesstyle()和setstyle()函数。为了扩展绘图,使用plotting_context()和set_context()函数。

第一个函数返回一个参数字典,第二个函数则设置matplotlib默认属性


sns.set()这句代码的意思就是重置seaborn的参数,就是以前设置的seaborn风格无效,如果参数为空就表示使用默认的seaborn风格,这是默认的风格实际上就是darkgrid风格,实际上有五种风格

一共有五个样式,那么可以使用sns.set_style("五种风格")来指定是使用哪种风格,指定之后所有的绘图就都会按照这样的风格来画

除了直接指定风格,使用已经存在的这五种风格之外,还可以自定义seaborn的样式,通过传递字典参数的方式

sns.set_style("ticks",{"xtick.major.size":8,"ytick.major.size":8})的方式来设置更加具体的样式

set_style的第二个参数是rc。用于指定自定义的seaborn的样式,rc字典中的键可以设置为下图中的这么多


除了以上的五种风格之外,还有sns.despine()这个是控制绘图的边框的,默认删除上方和右边的方框。

sns.despine(left=True)删除左边方框

sns.despine(offset=10,trim=True)offset是两坐标轴离开距离,当边框没有覆盖整个数据轴的范围时,trim参数会限制留存的边框范围

despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False)


设置一些线和字体的样式,从上到下线条越来越粗

sns.set_context("paper")

sns.set_context("talk")

sns.set_context("poster")

sns.set_context("notebook")默认设置

还可以使用一些名称来调用set_context来设置参数,然后通过提供的参数值的字典来覆盖参数,写入更加具体的一些配置

sns.set_context("notebook",font_scale=1.5,rc={"lines.linewidth":2.5})


seaborn的调色板

color_palette()能传入任何Matplotlib所支持的颜色

color_palette()不写参数则默认颜色

set_palette()设置所有图的颜色

最重要的就是直接设置调色板的函数就是color_palette()这个函数提供了许多seaborn内生成颜色的方式,并且它可以用于任何函数内部的palette参数设置

具体使用方法为:

sns.set(rc={"figure.figsize":(6,6)})设置美学参数

current_palette=sns.color_palette()设置一个默认的调色板

sns.palplot(current_palette)设置当前使用这个调色板

上面就是使用一个调色板的简单的形式,调色板有三种:

分类调色板,连续调色板,离散调色

分类调色板

默认的调色板只有6个颜色,如果要是使用8个颜色呢

current_palette=sns.color_palette("his",8)

his是一个颜色空间,表示在his中均匀取8份,这样的调色板上就有8中颜色了。

画板有了之后除了可以通过sns.palplot来设置当前使用的这个调色板之外还可以在画图的时候通过palette来指定

sns.boxplotl(data=data,palette=current_palette)data有8个数据,而current_palette正好有8个颜色

题外话:np.random.normal(size,loc.scale)是高斯分布

除了可以使用调色板来设置颜色之外还可以通过控制颜色的高度或者饱和度来控制颜色,函数是hls.palette()函数。

举例使用是:

sns.set(rc={"figure.figsize":(6,6)})

sns.palpllot(sns.hls_palette(8,l=.7,s=.9))

l表示亮度,s表示饱和度

由于人类视觉系统的工作方式,会导致在RGB度量上强度一致的颜色在视觉中并不平衡。比如,我们黄色和绿色是相对较亮的颜色,而蓝色则相对较暗,使得这可能会成为与hls系统一致的一个问题。

为了解决这一问题,seaborn为husl系统提供了一个接口,这也使得选择均匀间隔的色彩变得更加容易,同时保持亮度和饱和度更加一致。

sns.palplot(sns.color_palette("husl", 8))

Color Brewer工具,它提供了一些关于调色板是色盲安全的指导。有各种各样的适合色盲的颜色,但是最常见的变异导致很难区分红色和绿色。一般来说,避免使用红色和绿色来表示颜色以区分元素是一个不错的主意。

sns.palplot(sns.color_palette("Paired"))

sns.palplot(sns.color_palette("Set2", 10))


连续色板

sns.palplot(sns.color_palette("BLUE"))蓝色连续,后加-r是反转,后加-d是暗处理

cubehelix调色板系统具有线性增加或降低亮度和色调变化顺序的调色板,Matplotlib拥有一个默认的内置cubehelix版本可供创建:

sns.palplot(sns.color_palette("cubehelix", 8))

通过seaborn的cubehelix_palette()函数返回的调色板与matplotlib默认值稍有所不同,它不会在色轮周围旋转或覆盖更广的强度范围。seaborn还改变了排序使得更重要的值显得更暗:

sns.palplot(sns.cubehelix_palette(8))

其他cubehelix_palette()的参数主要调整色板的视觉。两个重要的选择是:start(值的范围为03)和rot,还有rot的次数(-11之间的任意值)

sns.palplot(sns.cubehelix_palette(8, start=.5, rot=-.75))

使用light_palette() 和dark_palette()调用定制连续调色板

sns.palplot(sns.light_palette("green"))

sns.palplot(sns.dark_palette("purple"))


离散色板

选择离散色板的规则类似于顺序色板,除了你想满足一个强调的颜色中点以及用不同起始颜色的两个相对微妙的变化。同样重要的是,起始值的亮度和饱和度是相同的。

Color Brewer颜色字典里拥有一套精心挑选的离散颜色映射:

sns.palplot(sns.color_palette("BrBG", 7))

sns.palplot(sns.color_palette("RdBu_r", 7))

另一个在matplotlib中建立coolwarm面板。请注意,这个颜色映射在中间值和极端之间并没有太大的对比。

sns.palplot(sns.color_palette("coolwarm", 7))


第三个:分布数据集的可视化:单变量分析绘图和多变量分析绘图

单变量

查看单变量最方便的无疑是displot()函数,默认绘制一个直方图,并你核密度估计(KDE)

sns.set(color_codes=True)

np.random.seed(sum(ord,"distributions"))

x=np.random.gamma(6,size=200)z这个是伽马函数,表示生成200个,以列表形式返回

sns.displot(x,kde=False,fit=stats.gamma)

Scipy的stats模块包含了多种概率分布的随机变量,gamma是连续分布的相关函数

双变量

双变量使用散点图,描述特征和特征之间的关系

mean,cov=[0,1],[(1,5),(5,1)]均值和协方差

data=np.random.multivariate_normal(mean,cov,200)

df=pd.DataFrame(data,colums=["x","y"])

sns.jointplot(x="x",y="y",data=df)

这样df中第一个维度是x,第二个维度是y

jointplot函数创建一个多面板数字,显示两个变量之间的双变量关系,及每个变量的单变量分布

上面的joinplot函数中还可以增加以下参数,kind="hex"这样的图叫做hex图,这回将数据多的地方加深,适用于数据较大的数据集,kind=“kde”是表示使用等高线显示核密度


上面是双变量,这样可以两个结合在一起,如果是多变量呢?

假如是四个变量,其实也可以两个结合在一起,可以使用pairplot函数

sns.set(color_codes=True)

iris=sns.load_dataset("iris")数据集的四个特征

sns.pairplot(iris)pairplot会将四个特征进行两两结合


第四个:线性关系可视化,回归绘图分析

sns.set(color_code=True)

np.random.seed(sum(map(ord,"regression")))

tips=sns.load_dataset("tips")

sns.regplot(x="total_bill",y="tip",data=tips)

plt.show()

这个程序会画出total_bill和tip之间的线性回归模型,就是最符合他们之间关系的那一条线

许多数据集包含多个定量和变量分析的目的是将这些变量相互关联起来,使用整个统计模型来估计两个噪声组之间的简单关系是很有帮助的,reglot()和lmplot()

两者的区别:

在regplot()函数中通过只传入x和y绘出:sns.regplot(x=tips["total_bill"], y=tips["tip"]);而相应的sns.lmplot(x=tips["total_bill"], y=tips["tip"])这种写法就会报错,因为数据集data是lmplot()的必传参数。

另一个主要区别是regplot()以各种格式接受x和y变量,包括numpy数组、Pandas的Series列或DataFrame对象的变量引用;不一样的是,lmplot()将数据集作为一个必需的参数,而x和y变量必须指定为字符串。这种数据格式称为“长格式”或“整洁”数据。

这里其实还有很多的内容,但是这里就不具体展开了

第五个:分类关系的可视化

散点图和回归模型适合连续的数据,但是当数据是离散的时候就没有意义了,这个时候不要使用回归模型来,那么处理分类数据的问题,非常实用的方法是将Seaborn的分类图分为三类

第一个包括函数swarmplot()和stripplot()

第二个包括函数boxplot()和violinplot()

第三个包括函数barplot()和pointplt()

显示分类变量级别中某些定量变量的值的一种简单方法使用stripplot(),它会将分散图概括为其中一个变量是分类的:

sns.stripplot(x="day", y="total_bill", data=tips);

效果为:

因为day是离散的所以可以看出所有的数据都在这一条线上,这样很多数据都重叠了,这样的数据是意义不大的额,为了解决这个问题,可以有以下几种方式:

方式一:抖动

sns.stripplot(x="day", y="total_bill", data=tips, jitter=True);

方式二swarmplot

sns.swarmplot(x="day", y="total_bill", data=tips);


上面的分类散点图固然简单实用,但在某些特定的的情况下,他们可以提供的值的分布信息会变得及其有限。 有几种方式可以方便的解决这个问题,在类别之间进行简单比较并汇总信息,我们快速讨论并比较一些适合这类数据观测的函数。

画盒图

sns.boxplot(x="day", y="total_bill", hue="time", data=tips);

提琴图violinplot(),它结合了箱体图和核心密度估计过程:

sns.violinplot(x="total_bill", y="day", hue="time", data=tips);

这种方法使用核密度估计来更好地描述值的分布,当色调参数只有两个级别时,也可以传入参数split至violinplot(),这样可以更有效地利用空间:

sns.violinplot(x="day", y="total_bill", hue="sex", data=tips, split=True);

你会发现盒图和小提琴的优势就是每个类别中数据集中的地方会变胖,如果,不是显示每个类别中的分布,你可能希望显示值的集中趋势,可以用下面的图


条形图

在Seaborn中barplot()函数在完整数据集上运行,并显示任意估计,默认情况下使用均值

sns.barplot(x="sex", y="survived", hue="class", data=titanic);

效果为:

条形图的特殊情况是当想要显示每个类别中的观察次数,而不是计算第二个变量的统计量。这类似于分类而不是定量变量的直方图。在Seaborn中,使用countplot()函数很容易绘制,函数将默认使用count参数作为x/y中未传的一组维度

sns.countplot(x="deck", data=titanic, palette="Greens_d");

点图

pointplot()函数提供了可视化相同信息的另一种风格。该函数还对另一轴的高度估计值进行编码,而不是显示一个完整的柱型,它只绘制点估计和置信区间。另外,点图连接相同hue类别的点。这使得很容易看出主要关系如何随着第二个变量的变化而变化,斜率的差异会很明显:

sns.pointplot(x="sex", y="survived", hue="class", data=titanic);


至此我们就将第五个:分类关系的可视化的主要几个画图方法总结完了,总的来说使用不难,就是在什么情况下使用哪个才是关键,在Seaborn中绘制分类图可以使用上面的几种方式,还有一种方式比较强大,那就是更高级别的函数factorplot(),将这些函数与FacetGrid()相结合,通过这个图形的更大的结构来增加展示其他类别的能力。

seaborn.factorplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=<function mean>, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind='point', size=4, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)

x,y,hue 数据集变量 变量名

date 数据集 数据集名

row,col 更多分类变量进行平铺显示 变量名

col_wrap 每行的最高平铺数 整数

estimator 在每个分类中进行矢量到标量的映射 矢量

ci 置信区间 浮点数或

Nonen_boot 计算置信区间时使用的引导迭代次数 整数

units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据

order, hue_order 对应排序列表 字符串列表

row_order, col_order 对应排序列表 字符串列表

kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点(具体图形参考文章前部的分类介绍)

size 每个面的高度(英寸) 标量

aspect 纵横比 标量

orient 方向 "v"/"h"

color 颜色

matplotlib颜色

palette 调色板

seaborn颜色色板或字典

legend hue的信息面板

True/Falselegend_out 是否扩展图形,并将信息框绘制在中心右边

True/Falseshare{x,y} 共享轴线

True/Falsefacet_kws FacetGrid的其他参数 字典

默认情况下,factorplot()产生一个pairplot():

pairplot是一个折现图,但是类似点图

sns.factorplot(x="day", y="total_bill", hue="smoker", data=tips);

我们可以使用kind参数来指定要画什么图:

kind=“bar”

kind=“swarm”

kind=“box”

除了可以指定要来画什么图之外还有一个强大的功能就是对数据展开更多其他分类变量:,比如参数col="time"

基于FacetGrid的工作原理,要更改图形的大小和形状,需要指定适用于每个方面的size和aspect参数:

sns.factorplot(x="time", y="total_bill", hue="smoker",col="day", data=tips, kind="box", size=4, aspect=.5);


用FacetGrid子集数据

当您想要在数据集的子集内可视化变量的分布或多个变量之间的关系时,FacetGrid类很有用。 FacetGrid可以绘制最多三个维度:row,col和hue。前两者与所得轴数有明显的对应关系;将hue变量视为沿着深度轴的第三维,其中不同的级别用不同的颜色绘制。

通过使用数据框初始化FacetGrid对象和将形成网格的行,列或色调维度的变量的名称来使用该类。 这些变量应该是分类的或离散的,然后变量的每个级别的数据将用于沿该轴的小平面。

tips = sns.load_dataset("tips")加载这个tips的数据

g = sns.FacetGrid(tips, col="time")对数据展示time

到目前为止的效果是这样的 ,还没有绘制任何东西

可视化数据的主要方法是使用FacetGrid.map()方法,提供一个绘图功能和数据框中变量的名称来绘制

g.map(plt.hist, "tip");这个就表示在上面的两个图中绘制tip,然后图为直方图,效果为:

至此就画完了,但是这个只是在time基础上绘制tip,tip并没有和其它的变量产生关系,所以直方图是最好的,但是多个变量的时候,应该是散点图才是最好的额,

g = sns.FacetGrid(tips, col="sex", hue="smoker")

g.map(plt.scatter, "total_bill", "tip", alpha=.7)

g.add_legend();

这个程序中col和hue都指定了,核心的散点图的关系还是tip和total_bill之间的额关系

效果就是上面的模样,有几个选项可以控制可以传递给类构造函数的网格的外观。

g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True)

g.map(sns.regplot, "size", "total_bill", color=".3", fit_reg=False, x_jitter=.1);

用PairGrid绘制成对的关系

该类的基本用法与FacetGrid非常相似。首先初始化网格,然后将绘图函数传递给map方法,并在每个子图上调用它。

iris = sns.load_dataset("iris")

g = sns.PairGrid(iris)

g.map(plt.scatter);

g = sns.PairGrid(iris)是iris中的变量两两结合

g.map(plt.scatter);然后画出散点图

至此就总结完了,当然这里只是简单的总结,目的就是梳理出一个框架来,具体的内容可以看我的具体的文章。

相关推荐

闪迪u盘低级格式化工具(闪迪u盘格式化分配单元大小)

闪迪U盘格式化后速度变慢的可能原因及解决方法如下:文件系统问题:格式化时选择的文件系统类型可能会影响U盘的性能。常见的文件系统类型包括FAT32、NTFS和exFAT等。如果文件系统类型不合适,可能会...

psd文件下载(psd格式下载网站)

  1、在photoshop中,不能通过置入的方法来加载PSD文件,因为,通过置入的方法加载PSD文件,它是以合并图层的方法把PSD文件加入,这样,就失去了PSD文件的所有图层信息。  2、在文档中想...

宏碁官网下载win7系统(宏碁官方系统)

宏基笔记本win8系统换成win7步骤:1、更改bios设置,关闭“SecureBoot”功能,启用传统的“LegacyBoot”。2、制作u启动U盘启动盘,下载win7系统安装包3、设置U盘启动...

如何重装系统win7旗舰版32位

首先下载制作一个带系统的启动u盘,然后按以下步骤安装:1、首先关闭电脑上面的杀毒软件,2、进入bios选择u盘启动。3、插入启动u盘重新启动电脑4、进入pe系统镜像环节,选择要安装的系统(32位),然...

应用程序发生异常0xe0000008

先查看一下对应的软件是不是出现了损坏,也可以重装此软件。我们还可以尝试通过修改注册表来解决。按Win+R(或者在开始菜单搜索框输入“运行”)打开运行,然后输入“regedit”回车,打开注册表恢复原来...

笔记本连接wifi显示无法连接网络

笔记本电脑连接wifi时提示无法连接到这个网络1、打开电脑“控制面板”,点击“网络连接”,选择本地连接,右键点击本地连接图标后选“属性”,在“常规”选项卡中双击“Internet协议(TCP/IP)...

windowsc盘清理大师(c盘清理大师怎么样)

 C盘清理大师是一款流氓软件,可不是windows10里自带。在你的电脑上出现这个软件一般情况下可以证明你使用的系统是盗版的,系统采用的是网上流传的系统镜像制作的。在网上流传这些系统镜像文件...

realtek没声音如何设置(realtek怎么调出来)

你给无线连接配IP地址呗第一步:下载驱动精灵软件。第二步:安装驱动精灵软件。1、在打开的驱动软件安装窗口,确定程序安装路径后,点击:一键安装;2、正在安装。第三步:更新驱动程序。1、安装非常迅速,已经...

腾达路由器手机端登录入口(腾达路由器手机端登录入口在哪)

腾达路由器使用192.168.0.1或tendawifi.com作为登录地址。登录管理员页面的步骤:1、手机连接到腾达路由器的wifi信号;2、在手机上打开浏览器,在地址栏输入192.168.0.1后...

百度网盘app下载安装手机版(百度网盘app安卓版)
百度网盘app下载安装手机版(百度网盘app安卓版)

百度网盘没有关闭离线下载功能,可以通过以下方法进行离线下载:1、打开手机,找到手机中的百度网盘:2、打开百度网盘,找到右下角的“我的”,找到屏幕中的“离线下载”:3、点击打开离线下载,选择“新建链接任务”,然后点击“确定”:4、在新建链接页...

2025-12-21 03:51 off999

自己配台式电脑怎么配(自己配台式电脑怎么配显卡)
  • 自己配台式电脑怎么配(自己配台式电脑怎么配显卡)
  • 自己配台式电脑怎么配(自己配台式电脑怎么配显卡)
  • 自己配台式电脑怎么配(自己配台式电脑怎么配显卡)
  • 自己配台式电脑怎么配(自己配台式电脑怎么配显卡)
安卓虚拟机破解版(挽念虚拟机15.0破解版)

正盗版都是广联达公司内部出来的,破解の用来打市场,正版的用来获取利润,个人破不了1、确保你的虚拟机网路设置正确。2、如果采用的是独立无线网卡那么要确保独立网卡能被虚拟机识别,虚拟机安装了独立无线网卡...

win7系统改中文(win7系统换中文)

要将Windows7系统从英文切换为中文,可以按照以下步骤进行:1.打开控制面板:点击Windows开始菜单,选择“控制面板”。2.打开区域和语言设置:在控制面板中,找到“时钟、语言和区域”或“...

win10启动盘怎么制作(windows10如何制作启动盘)

要制作Win10PE启动盘,首先需要下载Win10PE镜像文件。然后,使用专业的制作工具(如Rufus或WinToUSB)将镜像文件写入U盘或DVD。接下来,将U盘或DVD插入需要启动的计算机,并在B...

磁盘分区win7(磁盘分区win r)

1操作分区比较简单,但需要严格按照步骤进行,否则可能会导致数据丢失或无法启动等问题。2首先要进入磁盘管理界面,找到新安装的硬盘,右键选择“新建简单卷”,按照步骤设置分区大小、驱动器号、文件系统等。...

取消回复欢迎 发表评论: