数据可视化Python库介绍:Seaborn-让绘图变得有趣
off999 2024-09-26 16:07 40 浏览 0 评论
如果您曾经在Python中使用过线图,条形图等图形,那么您一定已经遇到了名为matplotlib的库。尽管matplotlib库非常复杂,但绘图并没有那么精细,也不是任何人发布的首选。这是seaborn出现的地方。
Seaborn是基于matplotlib的Python数据可视化库。它提供了一个高级界面,用于绘制引人入胜且内容丰富的统计图形。
该库是可视化的下一步。我们只需一个命令就可以绘制漂亮的图,甚至可以制作多个图。让我们开始探索seaborn。随附的GitHub存储库见评论区。
汇入资料
为了了解各种地块,我从Kaggle选择了一个有关“ 加州住房价格”的数据集。因此,我的第一步是导入pandas允许我读取CSV文件的库,然后使用来打印行数,列名和前5行head(5)。
import pandas as pd
dataset = pd.read_csv("dataset.csv")
print("Dataset: {}".format(dataset.shape))
print("Columns: {}".format(dataset.columns))
dataset.head(5)
## Output
# Dataset: (20640, 10)
# Columns: Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
# 'total_bedrooms', 'population', 'households', 'median_income',
# 'median_house_value', 'ocean_proximity'],
# dtype='object')
我们的数据集有20640行和10列,其名称在上面的要点中进行了描述。我们还看看前5行是什么样子。
Seaborn
让我们从导入开始matplotlib。请注意,我使用的是matplotlib版本3.0.3,而不是最新版本,因为存在一个会破坏热图并使其无效的错误。然后,我导入了seaborn。最后,为了确保Jupyter中的图显示在笔记本中,我们使用命令%matplotlib inline。
import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline
让我们开始探索情节!
散点图
当我们想要显示两个要素或一个要素与标签之间的关系时,散点图很有用。这非常有用,因为我们还可以描述每个数据点的大小,为它们涂上不同的颜色并使用不同的标记。让我们看看seaborn的基本命令是做什么的。
sns.scatterplot(x = 'total_rooms', y = 'total_bedrooms', data = dataset)
上图描述了total_rooms和之间的关系total_bedrooms。只需执行一个命令即可完成所有工作,但要等待,还有更多。
使用figsize,我将尺寸增加到12x8。然后,我将scatterplot命令更新为每个数据点的大小基于median_house_value,颜色使用hue基于ocean_proximity和标记使用style基于基于ocean_proximity。另外,如果没有适当的标题和轴标签,则绘图是不完整的,因此我也添加了它们。
plt.figure(figsize = (12, 8))
sns.scatterplot(data = dataset,
x = 'total_rooms',
y = 'total_bedrooms',
hue = 'ocean_proximity',
style = 'ocean_proximity')
plt.title("California Rooms vs Bedrooms")
plt.xlabel("Total rooms")
plt.ylabel("Total bedrooms")
如您所见,此图看起来比以前的图好很多,并且还包含一个不错的图例,因此任何人都可以看到和理解该图-应当是这样。
计数图
计数图根据某个类别列自动对数据点进行计数,并将数据显示为条形图。这在分类问题中非常有用,在分类问题中,我们要查看各种类的大小是否相同。但是,由于这不是分类数据,并且只有一个分类列,因此我决定使用它。
seaborn中的地块使我们也可以text使用来添加到每个条annotate。在仔细查看数据集时,我们发现缺少许多元数据信息。例如,该列具有尚未在任何地方描述ocean_proximity的值<1H OCEAN。人们应该始终收集元数据信息,并使用具有适当信息的数据集。由于这只是用于理解图的参考数据集,因此没什么大不了的。
plt.figure(figsize = (12, 8))
ocean_plot = sns.countplot(x = 'ocean_proximity', data = dataset)
for p in ocean_plot.patches:
ocean_plot.annotate(p.get_height(),
(p.get_x() + p.get_width() / 2.0,
p.get_height()),
ha = 'center'x,
va = 'center',
xytext = (0, 5),
textcoords = 'offset points')
plt.title("Count of houses based on their proximity to ocean")
plt.xlabel("Proximity to the ocean")
plt.ylabel("Count of houses")
在上图中,我们可以看到该列的数据高度不对称。带有条形文字非常有用,因为ISLAND仅通过查看绘图,最后一个类型看起来就好像是零值。
直方图
直方图是显示连续数据点并查看其分布方式的有效方法。我们可以看到,大多数值位于较低端,较高端或均匀分布。
的dist在seaborn情节既产生的直方图,以及基于所述数据图的密度线。我定义了总共10个垃圾箱,以便将整个垃圾箱median_house_value分配到10个不同的存储桶中。
plt.figure(figsize = (12, 8))
sns.distplot(a = dataset['median_house_value'], bins = 10, hist = True)
plt.title("Density and histogram plot for Median house value")
plt.xlabel("Median house value")
plt.ylabel("Value")
如我们所见,该分布似乎很正常,较高端略有尖峰。上图中的蓝线定义了密度的分布。
小提琴图
在与seaborn合作之前,我经常在各种文章中看到这些看起来很怪异的情节,并且想知道它们是什么。然后,我了解了它们,发现它们是小提琴图,与箱形图非常相似,并根据密度描绘了宽度以反映数据分布。在Seaborn中,创建小提琴图只是一个命令。
plt.figure(figsize = (12, 8))
sns.violinplot(x = 'ocean_proximity', y = 'median_house_value', data = dataset)
plt.title("Box plots of house values based on ocean proximity")
plt.xlabel("Ocean proximity")
plt.ylabel("Median house value")
在继续进行之前,让我们看看如何理解这些图。考虑一下绿色情节INLAND。从零延伸到大约250000的黑线是95%的置信区间。内部的黑色粗块是四分位间距,表示所有数据中约有50%位于该范围内。图的宽度基于数据的密度。我们可以将其理解为该特定数据集的直方图,其中黑线是x轴,完全平滑并旋转了90度。
热图
相关矩阵可帮助我们了解所有功能和标签如何相互关联以及相关程度。该pandas数据框中有一个调用的函数corr()生成相关矩阵,当我们把它输入到seaborn热图,我们得到了一个美丽的热图。设置annot为True可确保相关性也用数字定义。
plt.figure(figsize = (12, 8)) sns.heatmap(dataset.corr(), annot = True)
尽管整个图很有用,但我们可以从查看最后一列开始,并注意每个功能可能如何与标签相关联median_house_value。median_income与标签最相关,值为0.69。
联合图
联合图是我们要绘制的两个要素的散布图与密度图(直方图)的组合。seaborn的联合图使我们甚至可以使用kindas 甚至单独绘制线性回归reg。我使用heightas 8和color 定义了正方形尺寸green。
sns.jointplot(x = "total_rooms", y = "total_bedrooms", data=dataset, kind="reg", height = 8, color = 'g')
plt.xlabel("Total rooms")
plt.ylabel("Total bedrooms")
绿线描绘了基于数据点的线性回归。
带群图的箱形图
箱形图将信息显示在单独的四分位数和中位数中。与swarm图重叠时,数据点会分布在其位置上,因此根本不会重叠。
plt.figure(figsize = (12, 8))
sns.boxplot(x = 'ocean_proximity', y = 'median_house_value', data = dataset)
sns.swarmplot(x = 'ocean_proximity', y = 'median_house_value', data = dataset)
plt.title("Box plots of house values based on ocean proximity")
plt.xlabel("Ocean proximity")
plt.ylabel("Median house value")
从上面的污点中,我们可以看到如何对中的五个类别分别描述箱形图ocean_proximity。数据点揭示了数据如何分布。
对图
该对图会在每对特征和标签之间产生大量的图集。对于特征/标签的每种组合,此图均显示一个散点图,对于其自身的每种组合,均显示一个直方图。绘图本身对于获取手边的数据的本质非常有用。
sns.pairplot(dataset)
上图包含大量信息,而且仅需一条命令即可获得。
结论
在本文中,我们探索了一些无限的海洋图,这些图可以用来更好地理解图书馆的工作方式和能力。继续练习和尝试,因为选择几乎是无限的。
相关推荐
- 闪迪u盘低级格式化工具(闪迪u盘格式化分配单元大小)
-
闪迪U盘格式化后速度变慢的可能原因及解决方法如下:文件系统问题:格式化时选择的文件系统类型可能会影响U盘的性能。常见的文件系统类型包括FAT32、NTFS和exFAT等。如果文件系统类型不合适,可能会...
- psd文件下载(psd格式下载网站)
-
1、在photoshop中,不能通过置入的方法来加载PSD文件,因为,通过置入的方法加载PSD文件,它是以合并图层的方法把PSD文件加入,这样,就失去了PSD文件的所有图层信息。 2、在文档中想...
- 宏碁官网下载win7系统(宏碁官方系统)
-
宏基笔记本win8系统换成win7步骤:1、更改bios设置,关闭“SecureBoot”功能,启用传统的“LegacyBoot”。2、制作u启动U盘启动盘,下载win7系统安装包3、设置U盘启动...
- 如何重装系统win7旗舰版32位
-
首先下载制作一个带系统的启动u盘,然后按以下步骤安装:1、首先关闭电脑上面的杀毒软件,2、进入bios选择u盘启动。3、插入启动u盘重新启动电脑4、进入pe系统镜像环节,选择要安装的系统(32位),然...
- 应用程序发生异常0xe0000008
-
先查看一下对应的软件是不是出现了损坏,也可以重装此软件。我们还可以尝试通过修改注册表来解决。按Win+R(或者在开始菜单搜索框输入“运行”)打开运行,然后输入“regedit”回车,打开注册表恢复原来...
- 笔记本连接wifi显示无法连接网络
-
笔记本电脑连接wifi时提示无法连接到这个网络1、打开电脑“控制面板”,点击“网络连接”,选择本地连接,右键点击本地连接图标后选“属性”,在“常规”选项卡中双击“Internet协议(TCP/IP)...
- windowsc盘清理大师(c盘清理大师怎么样)
-
C盘清理大师是一款流氓软件,可不是windows10里自带。在你的电脑上出现这个软件一般情况下可以证明你使用的系统是盗版的,系统采用的是网上流传的系统镜像制作的。在网上流传这些系统镜像文件...
- realtek没声音如何设置(realtek怎么调出来)
-
你给无线连接配IP地址呗第一步:下载驱动精灵软件。第二步:安装驱动精灵软件。1、在打开的驱动软件安装窗口,确定程序安装路径后,点击:一键安装;2、正在安装。第三步:更新驱动程序。1、安装非常迅速,已经...
- 腾达路由器手机端登录入口(腾达路由器手机端登录入口在哪)
-
腾达路由器使用192.168.0.1或tendawifi.com作为登录地址。登录管理员页面的步骤:1、手机连接到腾达路由器的wifi信号;2、在手机上打开浏览器,在地址栏输入192.168.0.1后...
-
- 百度网盘app下载安装手机版(百度网盘app安卓版)
-
百度网盘没有关闭离线下载功能,可以通过以下方法进行离线下载:1、打开手机,找到手机中的百度网盘:2、打开百度网盘,找到右下角的“我的”,找到屏幕中的“离线下载”:3、点击打开离线下载,选择“新建链接任务”,然后点击“确定”:4、在新建链接页...
-
2025-12-21 03:51 off999
- 安卓虚拟机破解版(挽念虚拟机15.0破解版)
-
正盗版都是广联达公司内部出来的,破解の用来打市场,正版的用来获取利润,个人破不了1、确保你的虚拟机网路设置正确。2、如果采用的是独立无线网卡那么要确保独立网卡能被虚拟机识别,虚拟机安装了独立无线网卡...
- win7系统改中文(win7系统换中文)
-
要将Windows7系统从英文切换为中文,可以按照以下步骤进行:1.打开控制面板:点击Windows开始菜单,选择“控制面板”。2.打开区域和语言设置:在控制面板中,找到“时钟、语言和区域”或“...
- win10启动盘怎么制作(windows10如何制作启动盘)
-
要制作Win10PE启动盘,首先需要下载Win10PE镜像文件。然后,使用专业的制作工具(如Rufus或WinToUSB)将镜像文件写入U盘或DVD。接下来,将U盘或DVD插入需要启动的计算机,并在B...
- 磁盘分区win7(磁盘分区win r)
-
1操作分区比较简单,但需要严格按照步骤进行,否则可能会导致数据丢失或无法启动等问题。2首先要进入磁盘管理界面,找到新安装的硬盘,右键选择“新建简单卷”,按照步骤设置分区大小、驱动器号、文件系统等。...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
系统u盘安装(win11系统u盘安装)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
