百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python 绘图以及文件的基本操作(python3绘图)

off999 2024-09-26 16:07 23 浏览 0 评论


Python 绘图以及文件的基本操作

https://pypi.org/

Python Package Index (PyPI)

Python 绘图库 Matplotlib CMD 以管理员身份运行

pip install -U pip setuptoolspip install matplotlib

import numpy as np from matplotlib import pyplot as plt x = np.arange(1,11) y = 2 * x + 5 plt.title("Matplotlib demo") plt.xlabel("x axis caption") plt.ylabel("y axis caption") plt.plot(x,y) plt.show()

https://matplotlib.org/

https://matplotlib.org/tutorials/index.html#introductory

import matplotlib.pyplot as pltimport numpy as npx = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear')plt.plot(x, x**2, label='quadratic')plt.plot(x, x**3, label='cubic')

plt.xlabel('x label')plt.ylabel('y label')

plt.title("Simple Plot")

plt.legend()

plt.show()

https://matplotlib.org/tutorials/introductory/usage.html#sphx-glr-tutorials-introductory-usage-py


numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

增加中文的支持:#coding=utf-8

#coding=utf-8import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus']=False #用来正常显示负号import numpy as npx = np.linspace(-2, 2, 200)

plt.plot(x, x, label='y=x')plt.plot(x, x**2, label='y=x^2')plt.plot(x, x**3, label='y=x^3')

plt.xlabel('x 轴')plt.ylabel('y 轴')

plt.title("简单绘图")

plt.legend()

plt.show()

np.arange()函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是 1,终点是 5,步长为1。参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况1)一个参数时,参数值为终点,起点取默认值 0,步长取默认值 1。2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值 1。3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数

#coding=utf-8import matplotlib.pyplot as pltimport matplotlib.pyplot as plt1plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus']=False #用来正常显示负号import numpy as npx = np.linspace(-2, 2, 200)y=np.sin(x)plt.plot(x, x, label='y=x')plt.plot(x, x**2, label='y=x^2')plt.plot(x, x**3, label='y=x^3')

plt.xlabel('x 轴')plt.ylabel('y 轴')

plt.title("简单绘图")


plt.legend()plt1.plot(x,y)

plt.show()plt1.show()

python 可视化库 matplotlib 的显示模式默认为阻塞(block)模式 plt.show() 之后不会执行

plt.ion()这个函数,使matplotlib的显示模式转换为交互(interactive)模式 plt.show() 之后继续执行

plt.ioff()关闭交互模式plt.ion()打开交互模式

import matplotlib.pyplot as pltplt.ion()plt.plot([1.6, 2.7])plt.plot([3, 2])

# 创建一个画布plt.figure()# 在 figure 下线plt.plot(x, y1, "-o") #实线plt.plot(x, y2, "--o") #虚线plt.plot(x, y3, "-.o") #虚点线plt.plot(x, y4, ":o") # 点线# 展现画布plt.show()

plt.plot(x, y1, "-.") # 点plt.plot(x, y2, "-,") # 像素点plt.plot(x, y3, "-o") # 圆点

'^' 上三角点'v' 下三角点'<' 左三角点'>' 右三角点

plt.plot(x, y1, "-^")plt.plot(x, y2, "-v")plt.plot(x, y3, "-<")plt.plot(x, y4, "→")

'1' 下三叉点'2' 上三叉点'3' 左三叉点


'4' 右三叉点

plt.plot(x, y1, "-1")plt.plot(x, y2, "-2")plt.plot(x, y3, "-3")plt.plot(x, y4, "-4")

's' 正方点'p' 五角点'*' 星形点'h' 六边形 1'H' 六边形 2

plt.plot(x, y1, "-s")plt.plot(x, y2, "-p")plt.plot(x, y3, "-*")plt.plot(x, y4, "-h")plt.plot(x, y5, "-H")

'+' 加号点'x' 乘号点'D' 实心菱形点'd' 细菱形点'_' 横线点'|' 竖线点

plt.plot(x, y1, "-+")plt.plot(x, y2, "-x")plt.plot(x, y3, "-D")plt.plot(x, y4, "-d")plt.plot(x, y5, "-_")

color="green" 指定颜色为绿色

linestyle="dashed" 指定线形为 dashed 类型

marker="o" 指定标记类型为 o 点

markerfacecolor="blue"指定标记的颜色为蓝色

markersize=20 指定标记的大小为 20

plt.plot(x, y1, "-P")plt.plot(x, y2, "-|")plt.plot(x, y3, color="#000000")plt.plot(x, y4, "-o", markersize=20)plt.plot(x, y5, "-^", markerfacecolor="blue")


散点图plt.scatter(x, y, s, c ,marker, alpha)

x,y: x 轴与 y 轴的数据

s: 点的面积

c: 点的颜色

marker: 点的形状

alpha: 透明度

随机数x = np.random.randn(N)y2 = x + np.random.randn(N)*0.5

1.plot(x, y, marker='D')表示绘制折线图,marker 设置样式菱形。

2.scatter(x, y, marker='s', color='r')绘制散点图,红色正方形。 3.bar(x, y, 0.5, color='c')绘制柱状图,间距为 0.5,原色。 4.hist(data,40,normed=1,histtype='bar', facecolor='yellowgreen',alpha=0.75)直方图。 5.设置 x 轴和 y 轴的坐标值: xlim(-2.5, 2.5) #设置 x 轴范围 ylim(-1, 1) #设置 y 轴范围 6.显示中文和负号代码如下: plt.rcParams['font.sas-serig']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

from matplotlib import pyplot as pltimport numpy as npimport mathx=np.linspace(-10,10,100)

fig = plt.figure()ax1 = fig.add_subplot(231)plt.plot(x,x)plt.sca(ax1)ax2 = fig.add_subplot(232)plt.plot(x,x*x)plt.sca(ax2)ax3 = fig.add_subplot(233)plt.plot(x,x**3)plt.sca(ax3)ax4 = fig.add_subplot(234)plt.plot(x,np.sin(x))


plt.sca(ax4)ax5 = fig.add_subplot(235)plt.plot(x,np.cos(x))plt.sca(ax5)ax6 = fig.add_subplot(236)plt.plot(x,x*x+x**3)plt.sca(ax6)plt.grid(True)plt.show()


Python 的输入输出,文件目录小结

1,键盘输入

2,打印输出(显示器输出)

3,文件夹的建立

4,文件夹的命名

5,文件夹的删除

6,文件的删除

7,文件的输入

8,文件的输出

1,键盘输入str01=input("Please input a string:")print(str01)

将输入的字符串转换为整数

str01=input("Please input a string:")a=int(str01)b=a+10print(str01)print(a)print(b)


2,打印输出(显示器输出)

3,文件夹的建立

在 C 盘根目录下建立名为 pytest 的文件夹:

import osos.chdir("c:/")os.mkdir("pytest")


import osos.chdir("c:/")os.mkdir("pytest1")os.chdir("/pytest1")a=os.getcwd()print(a)


4,文件夹的命名os.rename( "test1.txt", "test2.txt" )

5,文件夹的删除os.rmdir("pytest1"): 删除文件夹

6,文件的删除import osos.chdir("c:/")os.chdir("/pytest1")a=os.getcwd()print(a)os.remove("a.txt")os.chdir("c:/")


os.rmdir("pytest1")

os.remove("a.txt"): 删除文件


getcwd()方法显示当前的工作目录

7,文件的输入

# 打开一个文件fp = open("c:/pytest/a.txt", "r+")print("文件名: ", fp.name)print("是否已关闭 : ", fp.closed)print("访问模式 : ", fp.mode)str=fp.read(5)fp.close()print(str)


建立一个空的文件 a.txt 供程序调用。

8,文件的输出

# 打开一个文件fp = open("c:/pytest/a.txt", "w")print("文件名: ", fp.name)print("是否已关闭 : ", fp.closed)print("访问模式 : ", fp.mode)


fp.write("hello,python");fp.close()


OPENCV & python & 机器视觉

https://docs.opencv.org/4.2.0/d6/d00/tutorial_py_root.html

软件安装

首先安装 python


Numpy package (for example, using pip install numpy command).

Matplotlib (pip install matplotlib) (Matplotlib is optional, but recommended since we use it a lot in our tutorials).


之前已经安装过了。

小知识:如何查找 python 环境中安装了什么?命令:pip list


确认 numpy 是正确安装并可以使用。

https://sourceforge.net/projects/opencvlibrary/files/4.2.0/opencv-4.2.0-vc14_vc15.exe/download

下载并解压

C:\opencv001\opencv\build\python\cv2\python-3.8

复制文件 cv2.pyd 到 C:\Python\Python38\Lib\site-packages 中


以上官方提供的方法可能会由于版本的不匹配不能安装,此时用下面的语句安装:

pip install opencv_python


输入 import cv2 出现如上图所示,表明安装完毕。

测试功能:打开图像文件 c:/a.jpg


原图为彩色图像,打开为黑白图像。

代码如下:import numpy as npimport cv2 as cvimg=cv.imread('c:/a.jpg',0)cv.imshow('image',img)cv.waitKey(0)cv.destroyAllWindows()


img=cv.imread('c:/a.jpg',0) 的参数含义:1:表示彩色, 0:表示灰度 or -1 cv.IMREAD_COLOR : Loads a color image. Any transparency of image will be neglected. It is the default flag.

cv.IMREAD_GRAYSCALE : Loads image in grayscale mode

cv.IMREAD_UNCHANGED : Loads image as such including alpha channel


彩色图像

将图像写入文件中

import numpy as npimport cv2 as cvimg=cv.imread('c:/a.jpg',0)cv.imwrite('c:/a1.jpg',img)cv.imshow('image',img)cv.waitKey(0)cv.destroyAllWindows()


原来彩色的图像,变成了灰度的图像了,这个可以作为图像转换的小应用。

使用 Matplotlib 库进行图像的显示,更多的显示方法,更多的参数选择,比如放大等


代码如下:

import numpy as npimport cv2 as cvfrom matplotlib import pyplot as plt

img=cv.imread('c:/a.jpg',0)plt.imshow(img,cmap='gray',interpolation='bicubic')plt.xticks([]),plt.yticks([])plt.show()

https://matplotlib.org/api/pyplot_api.html


https://blog.csdn.net/du_shuang/article/details/84111250

视频流的获取

import numpy as npimport cv2 as cvcap = cv.VideoCapture(0)if not cap.isOpened(): print("Cannot open camera") exit()while True: # Capture frame-by-frame ret, frame = cap.read() # if frame is read correctly ret is True if not ret: print("Can't receive frame (stream end?). Exiting ...") break # Our operations on the frame come here gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) # Display the resulting frame cv.imshow('frame', gray) if cv.waitKey(1) == ord('q'): break# When everything done, release the capturecap.release()cv.destroyAllWindows()


CV_GRAY2RGB是 gray到RGB CV_BGR2GRAY, CV_RGB2GRAY, CV_GRAY2BGR, CV_GRAY2RGB

色彩空间转换的模式,该 code来实现不同类型的颜色空间转换。比如CV_BGR2GRAY表示转换为灰度图,CV_BGR2HSV将图片从RGB空间转换为HSV空间。其中当 code选用CV_BGR2GRAY时,dst需要是单通道图片。当 code选用CV_BGR2HSV时,对于 8位图,需要将RGB值归一化到 0-1之间。这样得到HSV图中的H范围才是 0-360,S和V的范围是 0-1

1、RGB和 BGR(opencv默认的彩色图像的颜色空间是 BGR)颜色空间的转换

cv::COLOR_BGR2RGBcv::COLOR_RGB2BGRcv::COLOR_RGBA2BGRAcv::COLOR_BGRA2RGBA

2、向RGB和 BGR图像中增添 alpha通道

cv::COLOR_RGB2RGBAcv::COLOR_BGR2BGRA

3、从RGB和 BGR图像中去除 alpha通道

cv::COLOR_RGBA2RGBcv::COLOR_BGRA2BGR

4、从RBG和 BGR颜色空间转换到灰度空间

cv::COLOR_RGB2GRAYcv::COLOR_BGR2GRAY

cv::COLOR_RGBA2GRAYcv::COLOR_BGRA2GRAY

5、从灰度空间转换到 RGB和 BGR颜色空间

cv::COLOR_GRAY2RGBcv::COLOR_GRAY2BGR

cv::COLOR_GRAY2RGBAcv::COLOR_GRAY2BGRA


6、RGB和 BGR颜色空间与 BGR565颜色空间之间的转换

cv::COLOR_RGB2BGR565cv::COLOR_BGR2BGR565cv::COLOR_BGR5652RGBcv::COLOR_BGR5652BGRcv::COLOR_RGBA2BGR565cv::COLOR_BGRA2BGR565cv::COLOR_BGR5652RGBAcv::COLOR_BGR5652BGRA

7、灰度空间域BGR565之间的转换

cv::COLOR_GRAY2BGR555cv::COLOR_BGR5552GRAY

8、RGB和 BGR颜色空间与 CIE XYZ之间的转换

cv::COLOR_RGB2XYZcv::COLOR_BGR2XYZcv::COLOR_XYZ2RGBcv::COLOR_XYZ2BGR

9、RGB和 BGR颜色空间与 uma色度(YCrCb空间)之间的转换

cv::COLOR_RGB2YCrCbcv::COLOR_BGR2YCrCbcv::COLOR_YCrCb2RGBcv::COLOR_YCrCb2BGR

10、RGB和 BGR颜色空间与 HSV颜色空间之间的相互转换

cv::COLOR_RGB2HSVcv::COLOR_BGR2HSVcv::COLOR_HSV2RGBcv::COLOR_HSV2BGR

11、RGB和 BGR颜色空间与 HLS颜色空间之间的相互转换

cv::COLOR_RGB2HLScv::COLOR_BGR2HLScv::COLOR_HLS2RGBcv::COLOR_HLS2BGR

12、RGB和 BGR颜色空间与 CIE Lab颜色空间之间的相互转换


cv::COLOR_RGB2Labcv::COLOR_BGR2Labcv::COLOR_Lab2RGBcv::COLOR_Lab2BGR

13、RGB和 BGR颜色空间与 CIE Luv颜色空间之间的相互转换

cv::COLOR_RGB2Luvcv::COLOR_BGR2Luvcv::COLOR_Luv2RGBcv::COLOR_Luv2BGR

14、Bayer格式(raw data)向RGB或BGR颜色空间的转换

cv::COLOR_BayerBG2RGBcv::COLOR_BayerGB2RGBcv::COLOR_BayerRG2RGBcv::COLOR_BayerGR2RGBcv::COLOR_BayerBG2BGRcv::COLOR_BayerGB2BGRcv::COLOR_BayerRG2BGRcv::COLOR_BayerGR2BGR

彩色的视频捕捉

import numpy as npimport cv2 as cvcap = cv.VideoCapture(0)if not cap.isOpened(): print("Cannot open camera") exit()while True: # Capture frame-by-frame ret, frame = cap.read() # if frame is read correctly ret is True if not ret: print("Can't receive frame (stream end?). Exiting ...") break cv.imshow("Video",frame) if cv.waitKey(1) == ord('q'): break# When everything done, release the capturecap.release()


cv.destroyAllWindows()


  • Python 绘图库 Matplotlib


相关推荐

Python四种常用的高阶函数,你会用了吗

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...

Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)

一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...

数据分析-一元线性回归分析Python

前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...

python基础函数(python函数总结)

Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...

python进阶100集(9)int数据类型深入分析

一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...

Python学不会来打我(73)python常用的高阶函数汇总

python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...

python中有哪些内置函数可用于编写数值表达式?

在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...

如何在Python中获取数字的绝对值?

Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...

【Python大语言模型系列】使用dify云版本开发一个智能客服机器人

这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...

Python3.11版本使用thriftpy2的问题

Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...

uwsgi的python2+3多版本共存(python多版本兼容)

一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...

解释一下Python脚本中版本号声明的作用

在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...

除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理

在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...

今年回家没票了?不,我有高科技抢票

零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...

生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了

作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...

取消回复欢迎 发表评论: