百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

整理20个Pandas统计函数(pandas的count函数)

off999 2024-09-27 13:52 25 浏览 0 评论

大家好,最近整理了pandas中20个常用统计函数和用法,建议收藏学习~

模拟数据

为了解释每个函数的使用,模拟了一份带有空值的数据:

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

df = pd.DataFrame({
    "sex":["male","male","female","female","male"],
    "age":[22,24,25,26,24],
    "chinese":[100,120,110,100,90],
    "math":[90,np.nan,100,80,120],  # 存在空值
    "english":[90,130,90,80,100]})

df

描述统计信息describe

descirbe方法只能针对序列或数据框,一维数组是没有这个方法的;同时默认只能针对数值型的数据进行统计:

DataFrame.describe(percentiles=None,include=None,exclude=None)
  • percentiles:可选择的百分数,列表形式;数值在0-1之间,默认是[.25,.5,.75]
  • include/exclude:包含和排除的数据类型信息

返回的信息包含:

  • 非空值的数量count;特例:math字段中有一个空值
  • 均值mean
  • 标准差std
  • 最小值min
  • 最大值max
  • 25%、50%、75%分位数
df.describe()

添加了参数后的情况,我们发现:

  • sex字段的相关信息也被显示出来
  • 显示的信息更丰富,多了unique、top、freq等等

非空值数量count

返回的是每个字段中非空值的数量

In [5]:

df.count()

Out[5]:

sex        5
age        5
chinese    5
math       4  # 包含一个空值
english    5
dtype: int64

求和sum

In [6]:

df.sum()

在这里我们发现:如果字段是object类型的,sum函数的结果就是直接将全部取值拼接起来

Out[6]:

sex        malemalefemalefemalemale # 拼接
age                             121  # 相加求和
chinese                         520
math                          390.0
english                         490
dtype: object

最大值max

In [7]:

df.max()

针对字符串的最值(最大值或者最小值),是根据字母的ASCII码大小来进行比较的:

  • 先比较首字母的大小
  • 首字母相同的话,再比较第二个字母

Out[7]:

sex         male  
age           26
chinese      120
math       120.0
english      130
dtype: object

最小值min

和max函数的求解是类似的:

In [8]:

df.min()

Out[8]:

sex        female
age            22
chinese        90
math         80.0
english        80
dtype: object

分位数quantile

返回指定位置的分位数

In [9]:

df.quantile(0.2)

Out[9]:

age        23.6
chinese    98.0
math       86.0
english    88.0
Name: 0.2, dtype: float64

In [10]:

df.quantile(0.25)

Out[10]:

age         24.0
chinese    100.0
math        87.5
english     90.0
Name: 0.25, dtype: float64

In [11]:

df.quantile(0.75)

Out[11]:

age         25.0
chinese    110.0
math       105.0
english    100.0
Name: 0.75, dtype: float64

通过箱型图可以展示一组数据的25%、50%、75%的中位数:

In [12]:

plt.figure(figsize=(12,6))#设置画布的尺寸

plt.boxplot([df["age"],df["chinese"],df["english"]],
           labels = ["age","chinese","english"],
#            vert=False, 
           showmeans=True,
           patch_artist = True, 
           boxprops = {'color':'orangered','facecolor':'pink'}
#            showgrid=True
           )

plt.show()

箱型图的具体展示信息:

均值mean

一组数据的平均值

In [13]:

df.mean()

Out[13]:

age         24.2
chinese    104.0
math        97.5
english     98.0
dtype: float64

通过下面的例子我们发现:如果字段中存在缺失值(math存在缺失值),此时样本的个数会自动忽略缺失值的总数

In [14]:

390/4  # 个数不含空值

Out[14]:

97.5

中值/中位数median

比如:1,2,3,4,5 的中位数就是3

再比如:1,2,3,4,5,6 的中位数就是 3+4 = 3.5

In [15]:

df.median()

Out[15]:

age         24.0
chinese    100.0
math        95.0
english     90.0
dtype: float64

众数mode

一组数据中出现次数最多的数

In [16]:

df.mode()

Out[16]:

最大值索引idmax

idxmax() 返回的是最大值得索引

In [17]:

df["age"].idxmax()

Out[17]:

3

In [18]:

df["chinese"].idxmin()

Out[18]:

4

不能字符类型的字段使用该函数,Pandas不支持:

In [19]:

df["sex"].idxmax()

最小值索引idxmin

返回最小值所在的索引

In [20]:

df["age"].idxmin()

Out[20]:

0

In [21]:

df["math"].idxmin()

Out[21]:

3

In [22]:

df["sex"].idxmin()

不能字符类型的字段使用该函数,Pandas不支持:

方差var

计算一组数据的方差,需要注意的是:numpy中的方差叫总体方差,pandas中的方差叫样本方差

标准差(或方差)分为 总体标准差(方差)和 样本标准差(方差)

  • 前者分母为n,右pian的;后者分母为n-1,是无偏的
  • pandas里是算无偏的;numpy里是有偏的

In [23]:

df.var()

Out[23]:

age          2.200000
chinese    130.000000
math       291.666667  # pandas计算结果
english    370.000000
dtype: float64

In [24]:

df["math"].var()

Out[24]:

291.6666666666667

In [25]:

np.var(df["math"])  # numpy计算结果

Out[25]:

218.75

In [26]:

np.var(df["age"])

Out[26]:

1.7600000000000002

In [27]:

np.var(df["english"])

Out[27]:

296.0

标准差std

返回的是一组数据的标准差

In [28]:

df.std()

Out[28]:

age         1.483240
chinese    11.401754
math       17.078251
english    19.235384
dtype: float64

In [29]:

np.std(df["math"])

Out[29]:

14.79019945774904

In [30]:

np.std(df["english"])

Out[30]:

17.204650534085253

In [31]:

np.std(df["age"])

Out[31]:

1.32664991614216

如何理解pandas和numpy两种方法对方差的求解不同:

平均绝对偏差mad

In [32]:

df.mad()

Out[32]:

age         1.04
chinese     8.80
math       12.50
english    13.60
dtype: float64

以字段age为例:

In [33]:

df["age"].mad()

Out[33]:

1.0399999999999998

In [34]:

df["age"].tolist()

Out[34]:

[22, 24, 25, 26, 24]

In [35]:

age_mean = df["age"].mean()
age_mean

Out[35]:

24.2

In [36]:

(abs(22-age_mean) + abs(24-age_mean) + abs(25-age_mean) 
 + abs(26-age_mean) + abs(24-age_mean)) / 5

Out[36]:

1.0399999999999998

偏度-skew

偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。

偏度(Skewness)亦称偏态、偏态系数,表征概率分布密度曲线相对于平均值不对称程度的特征数。

直观看来就是密度函数曲线尾部的相对长度。定义上偏度是样本的三阶标准化矩:

In [37]:

df.skew()

Out[37]:

age       -0.551618
chinese    0.404796
math       0.752837
english    1.517474
dtype: float64

In [38]:

df["age"].skew()

Out[38]:

-0.5516180692881046

峰度-kurt

返回的是峰度值

In [39]:

df.kurt()

Out[39]:

age        0.867769
chinese   -0.177515
math       0.342857
english    2.607743
dtype: float64

In [40]:

df["age"].kurt()

Out[40]:

0.8677685950413174

In [41]:

df["math"].kurt()

Out[41]:

0.3428571428571434      

绝对值abs

返回数据的绝对值:

In [45]:

df["age"].abs()

Out[45]:

0    22
1    24
2    25
3    26
4    24
Name: age, dtype: int64

如果存在缺失值,绝对值函数求解后仍是NaN:

In [46]:

df["math"].abs()

Out[46]:

0     90.0
1      NaN
2    100.0
3     80.0
4    120.0
Name: math, dtype: float64

绝对值函数是针对数值型的字段,不能对字符类型的字段求绝对值:

In [47]:

# 字符类型的数据报错
df["sex"].abs()

元素乘积prod

In [48]:

df.prod()

Out[48]:

age        8.236800e+06
chinese    1.188000e+10
math       8.640000e+07
english    8.424000e+09
dtype: float64

In [49]:

df["age"].tolist()

Out[49]:

[22, 24, 25, 26, 24]

In [50]:

22 * 24 * 25 * 26 * 24

Out[50]:

8236800

累计求和cumsum

In [51]:

df.cumsum()

累计乘积cumprod

In [52]:

df["age"].cumprod()

Out[52]:

0         22
1        528
2      13200
3     343200
4    8236800
Name: age, dtype: int64

In [53]:

df["math"].cumprod()

Out[53]:

0          90.0
1           NaN
2        9000.0
3      720000.0
4    86400000.0
Name: math, dtype: float64

In [54]:

# 字符类型字段报错
df["sex"].cumprod()

20个统计函数

最后再总结下Pandas中常用来描述统计信息的函数:

原文链接:
https://mp.weixin.qq.com/s/QVAPbiAKzD0OS0V2VQN2BA

相关推荐

Linux 网络协议栈_linux网络协议栈

前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...

揭秘 BPF map 前生今世_bpfdm

1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...

教你简单 提取fmpeg 视频,音频,字幕 方法

ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...

Linux内核原理到代码详解《内核视频教程》

Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...

Linux C Socket UDP编程详解及实例分享

1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...

libevent源码分析之bufferevent使用详解

libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...

一次解决Linux内核内存泄漏实战全过程

什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...

彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏

作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...

linux网络编程常见API详解_linux网络编程视频教程

Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...

Linux下C++访问web—使用libcurl库调用http接口发送解析json数据

一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...

平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道

在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...

谈谈分布式文件系统下的本地缓存_什么是分布式文件存储

在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...

进程间通信之信号量semaphore--linux内核剖析

什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...

Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门

一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...

30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南

30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...

取消回复欢迎 发表评论: