Python数据清洗(一):类型转换和冗余数据删除
off999 2024-09-13 13:36 33 浏览 0 评论
作者 | 刘顺祥
来源 | 数据分析1480
数据分析过程中最头疼也是工作量最大的部分算是探索和清洗了——探索的目的是了解数据,了解数据背后隐藏的规律;洗的目的则是为了让干净的数据进入分析或建模的下一个环节。小编将通过三篇文章,详细讲解工作中常规的数据清洗方法,包括数据类型的转换,重复数据的处理,缺失值的处理以及异常数据的识别和处理。这是Python数据清洗系列的第一篇文章,主要分享的内容包括——数据类型的转换and冗余数据的识别和处理
数据类型的判断和转换
如下表所示,为某公司用户的个人信息和交易数据,涉及的字段为用户id、性别、年龄、受教育水平、交易金额和交易日期。从表面上看,似乎没有看出数据背后可能存在的问题,那接下来就将其读入到Python中,并通过探索的方式发现数据中的问题。
读取数据,以及查看数据规模、查看数据中各变量的数据类型的代码如下:
# 导入第三方包 import pandas as pd # 读入外部数据 data3 = pd.read_excel(io=r'C:\Users\Administrator\Desktop\datas\data3.xlsx') # 查看数据的规模 data3.shape out: (3000, 6) # 查看表中各变量的数据类型 # data3.dtypes out:
表中各变量的数据类型如表下表所示:
上述代码利用shape“方法”返回了数据集的规模,即该数据包含3000行6列;通过dtypes“方法”则返回了数据集中各变量的数据类型——除id变量和age变量为数值型,其余变量均为字符型。直观上能够感受到一点问题,即数据类型不对,例如用户id应该为字符型,消费金额custom_amt为数值型,订单日期为日期型。如果发现数据类型不对,如何借助于Python工具实现数据类型的转换呢?可参照如下代码的实现。
# 数值型转字符型 data3['id'] = data3['id'].astype(str) # 字符型转数值型 data3['custom_amt'] = data3['custom_amt'].str[1:].astype(float) # 字符型转日期型 data3['order_date'] = pd.to_datetime(data3['order_date'], format = '%Y年%m月%d日') # 重新查看数据集的各变量类型 data3.dtypes out:
这些数据经过处理后,各个字段的数据类型如下表所示:
如上结果所示,三个变量全都转换成了各自所期望的数据类型。astype“方法”用于数据类型的强制转换,可选择的常用转换类型包括str(表示字符型)、float(表示浮点型)和int(表示整型)。由于消费金额custom_amt变量中的值包含人民币符号“¥”,所以在数据类型转换之前必须将其删除(通过字符串的切片方法删除,[1:]表示从字符串的第二个元素开始截断)。对于字符转日期问题,推荐使用更加灵活的to_datetime函数,因为它在format参数的调节下,可以识别任意格式的字符型日期值。
需要注意的是,Python中的函数有两种表现形式,一种是常规理解下的函数(语法为func(parameters),如to_datetime函数),另一种则是“方法”(语法为obj.func(parameters),如dtypes和astype“方法”)。两者的区别在于 “方法”是针对特定对象的函数(即该“方法”只能用在某个固定类型的对象上),而函数并没有这方面的限制。
基于如上类型的转换结果,最后浏览一下数据的展现形式:
# 预览数据的前5行 data3.head()
冗余数据的判断和处理
如上过程是对数据中各变量类型的判断和转换,除此还需要监控表中是否存在“脏”数据,如冗余的重复观测和缺失值等。可以通过duplicated“方法”进行 “脏”数据的识别和处理。仍然对上边的data3数据为例进行操作,具体代码如下所示。
# 判断数据中是否存在重复观测 data3.duplicated().any() out: False
如上结果返回的是False,说明该数据集中并不存在重复观测。假如读者利用如上的代码在数据集中发现了重复观测,可以使用drop_duplicates“方法”将冗余信息删除。
需要说明的是,在使用duplicated“方法”对数据行作重复性判断时,会返回一个与原数据行数相同的序列(如果数据行没有重复,则对应False,否则对应True),为了得到最终的判断结果,需要再使用any“方法”(即序列中只要存在一个True,则返回True)。
duplicated“方法”和drop_duplicates“方法”都有一个非常重要的参数,就是subset。默认情况下不设置该参数时,表示对数据的所有列进行重复性判断;如果需要按指定的变量做数据的重复性判断时,就可以使用该参数指定具体的变量列表。举例如下:
# 构造数据 df = pd.DataFrame(dict(name = ['张三','李四','王二','张三','赵五','丁一','王二'], gender = ['男','男','女','男','女','女','男'], age = [29,25,27,29,21,22,27], income = [15600,14000,18500,15600,10500,18000,13000], edu = ['本科','本科','硕士','本科','大专','本科','硕士'])) # 查看数据 df
目测有两条数据完全一样,就是用户张三,如果直接使用drop_duplicates“方法”,而不做任何参数的修改时,将会删除第二次出现的用户张三。代码如下:
# 默认情况下,对数据的所有变量进行判断 df.drop_duplicates()
假设在数据清洗中,用户的姓名和年龄相同就认为是重复数据,那么该如何基于这两个变量进行重复值的删除呢?此时就需要使用subset参数了,代码如下:
df.drop_duplicates(subset=['name','age'])
需要注意的是,使用drop_duplicates“方法”删除重复数据,并不能直接影响到原始数据,即原始数据中还是存在重复观测的。如需使drop_duplicates“方法”的删除功能作用在原始数据中,必须将inplace参数设置为True。
本期的内容就介绍到这里,下一篇将分享缺失值的识别和处理技术。
相关推荐
- Python中的两个内置函数id()和type()
-
id()>>>id(3)2531362761072>>>id(3.222222)2531397393680>>>id(3.0)25313...
- python 函数中,如何将另一个函数作为参数传递
-
python函数中,如何将另一个函数作为参数传递,类似C#委托defadd(a,b):"""这是一个简单的加法函数,接受两个参数并返回它们的和。""...
- Python性能暴涨10倍的终极指南:7个核心技巧+代码压缩秘籍
-
提升Python程序运行性能,使代码运行更流畅更快,以及压缩代码,减小代码大小,下面的方法仅供大家参考,有什么更好的方法在评论区说说。1.使用NumPy/SciPy替代纯Python循环...
- Python 匿名函数(Lambda 函数)详解
-
匿名函数(AnonymousFunction),在Python中称为lambda函数,是一种不需要使用def关键字定义的小型函数。它主要用于简化代码,特别适合需要函数对象的地方。1.基...
- Python学习笔记 | 匿名函数lambda、映射函数map和过滤函数filter
-
什么是匿名函数?定义:没有函数名的自定义函数场景:函数体非常简单,使用次数很少,没有必要声明函数,通常搭配高阶函数使用。高阶函数是能够把函数当成参数进行传递的函数,如:映射函数map和过滤函数fil...
- python练习:自定义函数调用:商品购物实例
-
1、商品录入dict_myshanpin_iof={101:{"商品名称":"毛毛熊","单价":25},102:{"商品名称":...
- Python中如何使用Lambda函数(lambda在python中的用法)
-
Python和其他编程语言一样,都在其语法中添加了lambda函数,Pythonlambda是匿名函数,比常规Python自定义函数有更简洁的语法。虽然Lambda语法在开始时可能会觉得有点混乱,...
- 8-Python内置函数(python内置函数代码)
-
Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...
- 用Python进行函数式编程(python函数程序)
-
什么是函数式编程?函数式程序设计是一种编程范例,它把计算当作数学函数的评价,避免状态和可变数据。换句话说,函数编程(FunctionalProgramming,FP)促进没有副作用和不变变量的代码。它...
- python 函数进阶(python如何进阶)
-
1.有名函数和匿名函数#该函数有名称,名称是adddefadd(x,y):returnx+y#改函数没有名称属于匿名函数,也叫lambda表达式lambda_add...
- python自学者的分享:自定义函数、参数作用域、匿名函数、装饰器
-
#自定义新函数函数名newhsdefnewhs(a,b=1):#b的默认值为1,在没有传入b值时,采用默认值,,默认值参数不能放前边returna-bprint(newh...
- Python 函数式编程的 8 大核心技巧,不允许你还不会
-
函数式编程是一种强调使用纯函数、避免共享状态和可变数据的编程范式。Python虽然不是纯函数式语言,但提供了丰富的函数式编程特性。以下是Python函数式编程的8个核心技巧:1.纯函数(...
- 零基础到发布:手把手教你创建并分发 Python 自定义库
-
作为程序员,我们经常依赖各种外部库来解决不同的问题。这些库由技术娴熟的开发者创建,为我们提供了节省时间和精力的解决方案。但你是否曾想过:“我也能创建属于自己的自定义库吗?”答案是肯定的!本文将为你详细...
- 打工人学Python:(七)自定义函数,打造自己的武器库
-
从一个简单的函数开始#!/usr/bin/envpython#-*-encoding:utf-8-*-'''@Purpose:Wordcount@...
- 肖sir_python自定义函数format、zip函数
-
python自定义函数一、常见的自定义函数已经学过的函数:list、print、set、str、type、tuple、dict、range、input等今天学的函数:format二、实战讲解(一)f...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)