如何更好的理解Python 生成器和迭代器,yield语句
off999 2024-09-29 16:15 24 浏览 0 评论
什么是迭代器
顾名思义,迭代器就是用于迭代操作(for 循环)的对象,它像列表一样可以迭代获取其中的每一个元素,任何实现了 __next__ 方法 (python2 是 next)的对象都可以称为迭代器。
它与列表的区别在于,构建迭代器的时候,不像列表把所有元素一次性加载到内存,而是以一种延迟计算(lazy evaluation)方式返回元素,这正是它的优点。比如列表含有中一千万个整数,需要占超过400M的内存,而迭代器只需要几十个字节的空间。因为它并没有把所有元素装载到内存中,而是等到调用 next 方法时候才返回该元素(按需调用 call by need 的方式,本质上 for 循环就是不断地调用迭代器的next方法)。
以斐波那契数列为例来实现一个迭代器:
class Fib:
def __init__(self, n):
self.prev = 0
self.cur = 1
self.n = n
def __iter__(self):
return self
def __next__(self):
if self.n > 0:
value = self.cur
self.cur = self.cur + self.prev
self.prev = value
self.n -= 1
return value
else:
raise StopIteration()
# 兼容python2
def __next__(self):
return self.next()
f = Fib(10)
print([i for i in f])
#[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
什么是生成器
知道迭代器之后,就可以正式进入生成器的话题了。普通函数用 return 返回一个值,和 Java 等其他语言是一样的,然而在 Python 中还有一种函数,用关键字 yield 来返回值,这种函数叫生成器函数,函数被调用时会返回一个生成器对象, 生成器本质上还是一个迭代器 ,也是用在迭代操作中,因此它有和迭代器一样的特性,唯一的区别在于实现方式上不一样,后者更加简洁
最简单的生成器函数:
>>> def func(n):
... yield n*2
...
>>> func
<function func at 0x00000000029F6EB8>
>>> g = func(5)
>>> g
<generator object func at 0x0000000002908630>
>>>
func 就是一个生成器函数,调用该函数时返回对象就是生成器 g ,这个生成器对象的行为和迭代器是非常相似的,可以用在 for 循环等场景中。注意 yield 对应的值在函数被调用时不会立刻返回,而是调用next方法时(本质上 for 循环也是调用 next 方法)才返回
>>> g = func(5)
>>> next(g)
10
>>> g = func(5)
>>> for i in g:
... print(i)
...
10
那为什么要用生成器呢?显然,用生成器在逼格上要比迭代器高几个等级,它没有那么多冗长代码了,而且性能上一样的高效,为什么不用呢?来看看用生成器实现斐波那契数列有多简单。
def fib(n):
prev, curr = 0, 1
while n > 0:
n -= 1
yield curr
prev, curr = curr, curr + prev
print([i for i in fib(10)])
#[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
生成器表达式
器表达式与列表推导式长的非常像,但是它俩返回的对象不一样,前者返回生成器对象,后者返回列表对象。
>>> g = (x*2 for x in range(10))
>>> type(g)
<type 'generator'>
>>> l = [x*2 for x in range(10)]
>>> type(l)
<type 'list'>
前面已经介绍过生成器的优势,就是迭代海量数据时,显然生成器更合适。
Python中生成器和迭代器的区别(代码在Python3.5下测试):Num01–>迭代器定义:对于list、string、tuple、dict等这些容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数。iter()是python内置函数。iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素。next()也是python内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。
迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的_next_方法(Python3中是对象的_next_方法,Python2中是对象的next()方法)。所以,我们要想构造一个迭代器,就要实现它的_next_方法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现_iter_方法,而_iter_方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的_iter_方法返回自身self即可。
一些术语的解释:
1,迭代器协议:对象需要提供next()方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代。
2,可迭代对象:实现了迭代器协议对象。list、tuple、dict都是Iterable(可迭代对象),但不是Iterator(迭代器对象)。但可以使用内建函数iter(),把这些都变成Iterable(可迭代器对象)。
3,for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束
Python自带容器对象案例:# 随便定义一个listlistArray=[1,2,3]# 使用iter()函数iterName=iter(listArray)print(iterName)# 结果如下:是一个列表list的迭代器# <list_iterator object at 0x0000017B0D984278>
print(next(iterName))print(next(iterName))print(next(iterName))print(next(iterName))#没有迭代到下一个元素,直接抛出异常# 1# 2# 3# Traceback (most recent call last):# File "Test07.py", line 32, in <module># StopIterationPython中一个实现了_iter_方法和_next_方法的类对象,就是迭代器,如下案例是计算菲波那切数列的案例
class Fib(object):def __init__(self, max):super(Fib, self).__init__()self.max = max
def __iter__(self):self.a = 0self.b = 1return self
def __next__(self):fib = self.aif fib > self.max:raise StopIterationself.a, self.b = self.b, self.a + self.breturn fib
# 定义一个main函数,循环遍历每一个菲波那切数def main():# 20以内的数fib = Fib(20)for i in fib:print(i)
# 测试if __name__ == '__main__':main()解释说明:
在本类的实现中,定义了一个_iter_(self)方法,这个方法是在for循环遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter(),由iter()通过调用_iter_(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的_next_(self)方法对迭代器对象进行遍历。所以要实现_iter_(self)和_next_(self)这两个方法。
而且因为实现了_next_(self)方法,所以在实现_iter_(self)的时候,直接返回self就可以。
总结一句话就是:在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的_iter_(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的_next_(self)。
注意点:_iter_(self)只会被调用一次,而_next_(self)会被调用 n 次,直到出现StopIteration异常。
Num02–>生成器作用:>延迟操作。也就是在需要的时候才产生结果,不是立即产生结果。注意事项:>生成器是只能遍历一次的。>生成器是一类特殊的迭代器。分类:第一类:生成器函数:还是使用 def 定义函数,但是,使用yield而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行。
如下案例加以说明:
# 菲波那切数列def Fib(max):n, a, b = 0, 0, 1while n < max:yield ba, b = b, a + bn = n + 1return '亲!没有数据了...'# 调用方法,生成出10个数来f=Fib(10)# 使用一个循环捕获最后return 返回的值,保存在异常StopIteration的value中while True:try:x=next(f)print("f:",x)except StopIteration as e:print("生成器最后的返回值是:",e.value)break第二类:生成器表达式:类似于列表推导,只不过是把一对大括号[]变换为一对小括号()。但是,生成器表达式是按需产生一个生成器结果对象,要想拿到每一个元素,就需要循环遍历。
如下案例加以说明:
# 一个列表xiaoke=[2,3,4,5]# 生成器generator,类似于list,但是是把[]改为()gen=(a for a in xiaoke)for i in gen:print(i)#结果是:
# 为什么要使用生成器?因为效率。# 使用生成器表达式取代列表推导式可以同时节省 cpu 和 内存(RAM)。# 如果你构造一个列表(list)的目的仅仅是传递给别的函数,# 比如 传递给tuple()或者set(), 那就用生成器表达式替代吧!
# 本案例是直接把列表转化为元组kk=tuple(a for a in xiaoke)print(kk)#结果是:(2, 3, 4, 5)
好了,今天就分享到这里,希望本文对大家有所帮助,如果大家觉得有用可以点个关注支持一下谢谢!
另外多说一句,对于初学者我整理了一套python系统学习教程,从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。需要这些资料的只要关注我,在后台私信回复:“01”即可免费领取。
相关推荐
- apisix动态修改路由的原理_动态路由协议rip的配置
-
ApacheAPISIX能够实现动态修改路由(DynamicRouting)的核心原理,是它将传统的静态Nginx配置彻底解耦,通过中心化配置存储(如etcd)+OpenRest...
- 使用 Docker 部署 OpenResty Manager 搭建可视化反向代理系统
-
在之前的文章中,xiaoz推荐过可视化Nginx反向代理工具NginxProxyManager,最近xiaoz还发现一款功能更加强大,界面更加漂亮的OpenRestyManager,完全可以替代...
- OpenResty 入门指南:从基础到动态路由实战
-
一、引言1.1OpenResty简介OpenResty是一款基于Nginx的高性能Web平台,通过集成Lua脚本和丰富的模块,将Nginx从静态反向代理转变为可动态编程的应用平台...
- OpenResty 的 Lua 动态能力_openresty 动态upstream
-
OpenResty的Lua动态能力是其最核心的优势,它将LuaJIT嵌入到Nginx的每一个请求处理阶段,使得开发者可以用Lua脚本动态控制请求的生命周期,而无需重新编译或rel...
- LVS和Nginx_lvs和nginx的区别
-
LVS(LinuxVirtualServer)和Nginx都是常用的负载均衡解决方案,广泛应用于大型网站和分布式系统中,以提高系统的性能、可用性和可扩展性。一、基本概念1.LVS(Linux...
- 外网连接到内网服务器需要端口映射吗,如何操作?
-
外网访问内网服务器通常需要端口映射(或内网穿透),这是跨越公网与私网边界的关键技术。操作方式取决于网络环境,以下分场景详解。一、端口映射的核心原理内网服务器位于私有IP地址段(如192.168.x.x...
- Nginx如何解决C10K问题(1万个并发连接)?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。Nginx是大型架构的必备中间件,下面我就全面来详解NginxC10k问题@mikechen文章来源:mikec...
- 炸场!Spring Boot 9 大内置过滤器实战手册:从坑到神
-
炸场!SpringBoot9大内置过滤器实战手册:从坑到神在Java开发圈摸爬滚打十年,见过太多团队重复造轮子——明明SpringBoot自带的过滤器就能解决的问题,偏偏要手写几十...
- WordPress和Typecho xmlrpc漏洞_wordpress主题漏洞
-
一般大家都关注WordPress,毕竟用户量巨大,而国内的Typecho作为轻量级的博客系统就关注的人并不多。Typecho有很多借鉴WordPress的,包括兼容的xmlrpc接口,而WordPre...
- Linux Shell 入门教程(六):重定向、管道与命令替换
-
在前几篇中,我们学习了函数、流程控制等Shell编程的基础内容。现在我们来探索更高级的功能:如何控制数据流向、将命令链接在一起、让命令间通信变得可能。一、输入输出重定向(>、>>...
- Nginx的location匹配规则,90%的人都没完全搞懂,一张图让你秒懂
-
刚配完nginx网站就崩了?运维和开发都头疼的location匹配规则优先级,弄错顺序直接导致500错误。核心在于nginx处理location时顺序严格:先精确匹配=,然后前缀匹配^~,接着按顺序正...
- liunx服务器查看故障命令有那些?_linux查看服务器性能命令
-
在Linux服务器上排查故障时,需要使用一系列命令来检查系统状态、日志文件、资源利用情况以及网络状况。以下是常用的故障排查命令,按照不同场景分类说明。1.系统资源相关命令1.1查看CPU使...
- 服务器被入侵的常见迹象有哪些?_服务器入侵可以被完全操纵吗
-
服务器被入侵可能会导致数据泄露、服务异常或完全失控。及时发现入侵迹象能够帮助你尽早采取措施,减少损失。以下是服务器被入侵的常见迹象以及相关的分析与处理建议。1.服务器被入侵的常见迹象1.1系统性能...
- 前端错误可观测最佳实践_前端错误提示
-
场景解析对于前端项目,生产环境的代码通常经过压缩、混淆和打包处理,当代码在运行过程中产生错误时,通常难以还原原始代码从而定位问题,对于深度混淆尤其如此,因此Mozilla自2011年开始发起并...
- 8个能让你的Kubernetes集群“瞬间崩溃”的配置错误
-
错误一:livenessProbe探针“自杀式”配置——30秒内让Pod重启20次现象:Pod状态在Running→Terminating→CrashLoopBackOff之间循环,重启间隔仅...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- apisix动态修改路由的原理_动态路由协议rip的配置
- 使用 Docker 部署 OpenResty Manager 搭建可视化反向代理系统
- OpenResty 入门指南:从基础到动态路由实战
- OpenResty 的 Lua 动态能力_openresty 动态upstream
- LVS和Nginx_lvs和nginx的区别
- 外网连接到内网服务器需要端口映射吗,如何操作?
- Nginx如何解决C10K问题(1万个并发连接)?
- 炸场!Spring Boot 9 大内置过滤器实战手册:从坑到神
- WordPress和Typecho xmlrpc漏洞_wordpress主题漏洞
- Linux Shell 入门教程(六):重定向、管道与命令替换
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)