如何更好的理解Python 生成器和迭代器,yield语句
off999 2024-09-29 16:15 16 浏览 0 评论
什么是迭代器
顾名思义,迭代器就是用于迭代操作(for 循环)的对象,它像列表一样可以迭代获取其中的每一个元素,任何实现了 __next__ 方法 (python2 是 next)的对象都可以称为迭代器。
它与列表的区别在于,构建迭代器的时候,不像列表把所有元素一次性加载到内存,而是以一种延迟计算(lazy evaluation)方式返回元素,这正是它的优点。比如列表含有中一千万个整数,需要占超过400M的内存,而迭代器只需要几十个字节的空间。因为它并没有把所有元素装载到内存中,而是等到调用 next 方法时候才返回该元素(按需调用 call by need 的方式,本质上 for 循环就是不断地调用迭代器的next方法)。
以斐波那契数列为例来实现一个迭代器:
class Fib:
def __init__(self, n):
self.prev = 0
self.cur = 1
self.n = n
def __iter__(self):
return self
def __next__(self):
if self.n > 0:
value = self.cur
self.cur = self.cur + self.prev
self.prev = value
self.n -= 1
return value
else:
raise StopIteration()
# 兼容python2
def __next__(self):
return self.next()
f = Fib(10)
print([i for i in f])
#[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
什么是生成器
知道迭代器之后,就可以正式进入生成器的话题了。普通函数用 return 返回一个值,和 Java 等其他语言是一样的,然而在 Python 中还有一种函数,用关键字 yield 来返回值,这种函数叫生成器函数,函数被调用时会返回一个生成器对象, 生成器本质上还是一个迭代器 ,也是用在迭代操作中,因此它有和迭代器一样的特性,唯一的区别在于实现方式上不一样,后者更加简洁
最简单的生成器函数:
>>> def func(n):
... yield n*2
...
>>> func
<function func at 0x00000000029F6EB8>
>>> g = func(5)
>>> g
<generator object func at 0x0000000002908630>
>>>
func 就是一个生成器函数,调用该函数时返回对象就是生成器 g ,这个生成器对象的行为和迭代器是非常相似的,可以用在 for 循环等场景中。注意 yield 对应的值在函数被调用时不会立刻返回,而是调用next方法时(本质上 for 循环也是调用 next 方法)才返回
>>> g = func(5)
>>> next(g)
10
>>> g = func(5)
>>> for i in g:
... print(i)
...
10
那为什么要用生成器呢?显然,用生成器在逼格上要比迭代器高几个等级,它没有那么多冗长代码了,而且性能上一样的高效,为什么不用呢?来看看用生成器实现斐波那契数列有多简单。
def fib(n):
prev, curr = 0, 1
while n > 0:
n -= 1
yield curr
prev, curr = curr, curr + prev
print([i for i in fib(10)])
#[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
生成器表达式
器表达式与列表推导式长的非常像,但是它俩返回的对象不一样,前者返回生成器对象,后者返回列表对象。
>>> g = (x*2 for x in range(10))
>>> type(g)
<type 'generator'>
>>> l = [x*2 for x in range(10)]
>>> type(l)
<type 'list'>
前面已经介绍过生成器的优势,就是迭代海量数据时,显然生成器更合适。
Python中生成器和迭代器的区别(代码在Python3.5下测试):Num01–>迭代器定义:对于list、string、tuple、dict等这些容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数。iter()是python内置函数。iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素。next()也是python内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。
迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的_next_方法(Python3中是对象的_next_方法,Python2中是对象的next()方法)。所以,我们要想构造一个迭代器,就要实现它的_next_方法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现_iter_方法,而_iter_方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的_iter_方法返回自身self即可。
一些术语的解释:
1,迭代器协议:对象需要提供next()方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代。
2,可迭代对象:实现了迭代器协议对象。list、tuple、dict都是Iterable(可迭代对象),但不是Iterator(迭代器对象)。但可以使用内建函数iter(),把这些都变成Iterable(可迭代器对象)。
3,for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束
Python自带容器对象案例:# 随便定义一个listlistArray=[1,2,3]# 使用iter()函数iterName=iter(listArray)print(iterName)# 结果如下:是一个列表list的迭代器# <list_iterator object at 0x0000017B0D984278>
print(next(iterName))print(next(iterName))print(next(iterName))print(next(iterName))#没有迭代到下一个元素,直接抛出异常# 1# 2# 3# Traceback (most recent call last):# File "Test07.py", line 32, in <module># StopIterationPython中一个实现了_iter_方法和_next_方法的类对象,就是迭代器,如下案例是计算菲波那切数列的案例
class Fib(object):def __init__(self, max):super(Fib, self).__init__()self.max = max
def __iter__(self):self.a = 0self.b = 1return self
def __next__(self):fib = self.aif fib > self.max:raise StopIterationself.a, self.b = self.b, self.a + self.breturn fib
# 定义一个main函数,循环遍历每一个菲波那切数def main():# 20以内的数fib = Fib(20)for i in fib:print(i)
# 测试if __name__ == '__main__':main()解释说明:
在本类的实现中,定义了一个_iter_(self)方法,这个方法是在for循环遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter(),由iter()通过调用_iter_(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的_next_(self)方法对迭代器对象进行遍历。所以要实现_iter_(self)和_next_(self)这两个方法。
而且因为实现了_next_(self)方法,所以在实现_iter_(self)的时候,直接返回self就可以。
总结一句话就是:在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的_iter_(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的_next_(self)。
注意点:_iter_(self)只会被调用一次,而_next_(self)会被调用 n 次,直到出现StopIteration异常。
Num02–>生成器作用:>延迟操作。也就是在需要的时候才产生结果,不是立即产生结果。注意事项:>生成器是只能遍历一次的。>生成器是一类特殊的迭代器。分类:第一类:生成器函数:还是使用 def 定义函数,但是,使用yield而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行。
如下案例加以说明:
# 菲波那切数列def Fib(max):n, a, b = 0, 0, 1while n < max:yield ba, b = b, a + bn = n + 1return '亲!没有数据了...'# 调用方法,生成出10个数来f=Fib(10)# 使用一个循环捕获最后return 返回的值,保存在异常StopIteration的value中while True:try:x=next(f)print("f:",x)except StopIteration as e:print("生成器最后的返回值是:",e.value)break第二类:生成器表达式:类似于列表推导,只不过是把一对大括号[]变换为一对小括号()。但是,生成器表达式是按需产生一个生成器结果对象,要想拿到每一个元素,就需要循环遍历。
如下案例加以说明:
# 一个列表xiaoke=[2,3,4,5]# 生成器generator,类似于list,但是是把[]改为()gen=(a for a in xiaoke)for i in gen:print(i)#结果是:
# 为什么要使用生成器?因为效率。# 使用生成器表达式取代列表推导式可以同时节省 cpu 和 内存(RAM)。# 如果你构造一个列表(list)的目的仅仅是传递给别的函数,# 比如 传递给tuple()或者set(), 那就用生成器表达式替代吧!
# 本案例是直接把列表转化为元组kk=tuple(a for a in xiaoke)print(kk)#结果是:(2, 3, 4, 5)
好了,今天就分享到这里,希望本文对大家有所帮助,如果大家觉得有用可以点个关注支持一下谢谢!
另外多说一句,对于初学者我整理了一套python系统学习教程,从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。需要这些资料的只要关注我,在后台私信回复:“01”即可免费领取。
相关推荐
- Python钩子函数实现事件驱动系统(created钩子函数)
-
钩子函数(HookFunction)是现代软件开发中一个重要的设计模式,它允许开发者在特定事件发生时自动执行预定义的代码。在Python生态系统中,钩子函数广泛应用于框架开发、插件系统、事件处理和中...
- Python函数(python函数题库及答案)
-
定义和基本内容def函数名(传入参数):函数体return返回值注意:参数、返回值如果不需要,可以省略。函数必须先定义后使用。参数之间使用逗号进行分割,传入的时候,按照顺序传入...
- Python技能:Pathlib面向对象操作路径,比os.path更现代!
-
在Python编程中,文件和目录的操作是日常中不可或缺的一部分。虽然,这么久以来,钢铁老豆也还是习惯性地使用os、shutil模块的函数式API,这两个模块虽然功能强大,但在某些情况下还是显得笨重,不...
- 使用Python实现智能物流系统优化与路径规划
-
阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。在现代物流系统中,优化运输路径和提高配送效率是至关重要的。本文将介绍如何使用Python实现智能物流系统的优化与路...
- Python if 语句的系统化学习路径(python里的if语句案例)
-
以下是针对Pythonif语句的系统化学习路径,从零基础到灵活应用分为4个阶段,包含具体练习项目和避坑指南:一、基础认知阶段(1-2天)目标:理解条件判断的逻辑本质核心语法结构if条件:...
- [Python] FastAPI基础:Path路径参数用法解析与实例
-
查询query参数(上一篇)路径path参数(本篇)请求体body参数(下一篇)请求头header参数本篇项目目录结构:1.路径参数路径参数是URL地址的一部分,是必填的。路径参...
- Python小案例55- os模块执行文件路径
-
在Python中,我们可以使用os模块来执行文件路径操作。os模块提供了许多函数,用于处理文件和目录路径。获取当前工作目录(CurrentWorkingDirectory,CWD):使用os....
- python:os.path - 常用路径操作模块
-
应该是所有程序都需要用到的路径操作,不废话,直接开始以下是常用总结,当你想做路径相关时,首先应该想到的是这个模块,并知道这个模块有哪些主要功能,获取、分割、拼接、判断、获取文件属性。1、路径获取2、路...
- 原来如此:Python居然有6种模块路径搜索方式
-
点赞、收藏、加关注,下次找我不迷路当我们使用import语句导入模块时,Python是怎么找到这些模块的呢?今天我就带大家深入了解Python的6种模块路径搜索方式。一、Python模块...
- 每天10分钟,python进阶(25)(python进阶视频)
-
首先明确学习目标,今天的目标是继续python中实例开发项目--飞机大战今天任务进行面向对象版的飞机大战开发--游戏代码整编目标:完善整串代码,提供完整游戏代码历时25天,首先要看成品,坚持才有收获i...
- python 打地鼠小游戏(打地鼠python程序设计说明)
-
给大家分享一段AI自动生成的代码(在这个游戏中,玩家需要在有限时间内打中尽可能多的出现在地图上的地鼠),由于我现在用的这个电脑没有安装sublime或pycharm等工具,所以还没有测试,有兴趣的朋友...
- python线程之十:线程 threading 最终总结
-
小伙伴们,到今天threading模块彻底讲完。现在全面总结threading模块1、threading模块有自己的方法详细点击【threading模块的方法】threading模块:较低级...
- Python信号处理实战:使用signal模块响应系统事件
-
信号是操作系统用来通知进程发生了某个事件的一种异步通信方式。在Python中,标准库的signal模块提供了处理这些系统信号的机制。信号通常由外部事件触发,例如用户按下Ctrl+C、子进程终止或系统资...
- Python多线程:让程序 “多线作战” 的秘密武器
-
一、什么是多线程?在日常生活中,我们可以一边听音乐一边浏览新闻,这就是“多任务处理”。在Python编程里,多线程同样允许程序同时执行多个任务,从而提升程序的执行效率和响应速度。不过,Python...
- 用python写游戏之200行代码写个数字华容道
-
今天来分析一个益智游戏,数字华容道。当初对这个游戏颇有印象还是在最强大脑节目上面,何猷君以几十秒就完成了这个游戏。前几天写2048的时候,又想起了这个游戏,想着来研究一下。游戏玩法用尽量少的步数,尽量...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)