【Python数据分析系列】全面梳理数组维度转化和堆叠操作(案例)
off999 2024-10-01 13:48 14 浏览 0 评论
这是Python数据分析系列原创文章,我的第184篇原创文章。
一、问题
在做数据分析和机器学习任务的时候,经常会遇到数据的重组,这就涉及到关于数组的维度转化和堆叠问题,本文将详细总结数据的堆叠操作方法。希望读者自己能够感悟其中的区别。
二、数组的属性和方法
数据准备
import numpy as np
X1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
X2 = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]])
2.1 尺寸、形状、长度
print('元素数量', X2.size) # 输出数组元素的个数
print('行数', np.size(X2, 0), '列数', np.size(X2, 1)) # 输出行数和列数
print("维度:", X2.shape) # 输出数组的形状(维度)
print('行数', X2.shape[0], '列数', X2.shape[1]) # 输出行数和列数
print('长度', len(X2)) # 输出数组的长度
输出结果:
2.2 一维数组转二维
X3 = X1.reshape(len(X1), 1)
X4 = np.reshape(X1, (-1, 1))
以上两种方法等价,np.reshape函数可以在不改变数组元素的情况下改变数组的形状,但是需要确保新的形状与原数组的元素数量匹配。
2.3 二维数组转一维
X5 = X2.flatten()
np.flatten方法返回一个展平后的一维数组,其中元素按照原数组的顺序排列。
三、创建数组
3.1 根据一组索引号创建数组
# 索引和数据
l1 = [0, 1, 2]
l2 = [0, 5, 2]
data = [55, 58, 58]
indices = list(zip(l1, l2))
# 确定二维数组的大小
max_index = np.max(indices, axis=0)
rows, cols = max_index[0] + 1, max_index[1] + 1
# 创建初始的二维数组
arr = np.zeros((rows, cols))
# 根据索引和数据填充二维数组
for idx, value in zip(indices, data):
arr[idx] = value
print(arr)
# 绘制数据的热力图
# ax = sns.heatmap(arr)
# plt.show()
arr如下:arr[0][0]=55;arr[1][5]=55;arr[2][2]=55;
3.2 np.random()随机数生成数组
np.random.seed(0)
data = np.random.rand(10, 12)
np.random.rand()返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。
np.random.randn()返回一个或一组服从标准正态分布的随机样本值。
np.random.seed(0)
data = np.random.randint(2, high=10, size=(2,3))
numpy.random.randint()返回一个随机整型数
np.random.seed(0)
data = np.random.random((3, 4))
np.random.random()返回[0,1)之间的浮点数
三、数组堆叠操作
准备数据
a1 = np.array([1, 3, 4]) # shape (3,)
a2 = np.array([4, 6, 7]) # shape (3,)
a3 = np.array([8, 10, 14]) # shape (3,)
b1 = np.array([[1,2,3],[4,5,6]]) # shape (3, 3)
b2 = np.array([[11,21,31],[7,8,9]]) # shape (3, 3)
3.1 stack()
c1 = np.stack((a1, a2, a3), axis=0)
c2 = np.stack((a1, a2, a3), axis=1)
np.stack是NumPy库中的一个函数,用于沿新的轴将多个数组堆叠在一起。它可以用于在新的维度上将多个数组进行堆叠,从而创建一个更高维度的数组。需要注意的是,堆叠的数组必须具有相同的形状。
以上是在第一个维度上(行)进行堆叠的结果
以上是在第二个维度(列)上进行堆叠的结果
3.2 vstack()
d1 = np.vstack((a1, a2, a3))
np.vstack是NumPy库中的一个函数,用于沿垂直方向(行方向)将多个数组堆叠在一起。它可以将多个数组垂直堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了垂直方向(行方向)以外的其他维度上必须具有相同的形状。
以上是堆叠的结果,沿行方向,列数不变。
3.3 hstack()
e1 = np.hstack((a1, a2, a3))
np.hstack是NumPy库中的一个函数,用于沿水平方向(列方向)将多个数组堆叠在一起。它可以将多个数组水平堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了水平方向(列方向)以外的其他维度上必须具有相同的形状。
以上是堆叠的结果,沿列方向,行数不变。
3.4 dstack()
f1 = np.dstack((a1, a2, a3))
np.dstack是NumPy库中的一个函数,用于沿深度方向(第三维度)将多个数组堆叠在一起。它可以将多个二维数组沿深度方向堆叠成一个更大的三维数组。需要注意的是,堆叠的数组在除了深度方向(第三维度)以外的其他维度上必须具有相同的形状。
3.5 row_stack()
g1 = np.row_stack((a1, a2, a3))
np.row_stack是NumPy库中的一个函数,用于沿行方向将多个数组堆叠在一起。它可以将多个数组按行堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了行方向以外的其他维度上必须具有相同的形状。
以上是堆叠的结果
3.6 column_stack()
h1 = np.column_stack((a1, a2, a3))
np.column_stack是NumPy库中的一个函数,用于沿列方向将多个数组堆叠在一起。它可以将多个数组按列堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了列方向以外的其他维度上必须具有相同的形状。
以上是堆叠的结果
3.7 concatenate()
i1 = np.concatenate((a1, a2, a3), axis=0)
i2 = np.concatenate((b1, b2), axis=1)
np.concatenate是NumPy库中的一个函数,用于沿指定轴将多个数组连接在一起。它可以将多个数组在指定的轴上进行连接,生成一个更大的数组。需要注意的是,连接的数组在除了指定轴以外的其他维度上必须具有相同的形状。
i1结果:
i2结果:
本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注私信作者!
作者简介:
读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。
致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
原文链接:
相关推荐
- Python钩子函数实现事件驱动系统(created钩子函数)
-
钩子函数(HookFunction)是现代软件开发中一个重要的设计模式,它允许开发者在特定事件发生时自动执行预定义的代码。在Python生态系统中,钩子函数广泛应用于框架开发、插件系统、事件处理和中...
- Python函数(python函数题库及答案)
-
定义和基本内容def函数名(传入参数):函数体return返回值注意:参数、返回值如果不需要,可以省略。函数必须先定义后使用。参数之间使用逗号进行分割,传入的时候,按照顺序传入...
- Python技能:Pathlib面向对象操作路径,比os.path更现代!
-
在Python编程中,文件和目录的操作是日常中不可或缺的一部分。虽然,这么久以来,钢铁老豆也还是习惯性地使用os、shutil模块的函数式API,这两个模块虽然功能强大,但在某些情况下还是显得笨重,不...
- 使用Python实现智能物流系统优化与路径规划
-
阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。在现代物流系统中,优化运输路径和提高配送效率是至关重要的。本文将介绍如何使用Python实现智能物流系统的优化与路...
- Python if 语句的系统化学习路径(python里的if语句案例)
-
以下是针对Pythonif语句的系统化学习路径,从零基础到灵活应用分为4个阶段,包含具体练习项目和避坑指南:一、基础认知阶段(1-2天)目标:理解条件判断的逻辑本质核心语法结构if条件:...
- [Python] FastAPI基础:Path路径参数用法解析与实例
-
查询query参数(上一篇)路径path参数(本篇)请求体body参数(下一篇)请求头header参数本篇项目目录结构:1.路径参数路径参数是URL地址的一部分,是必填的。路径参...
- Python小案例55- os模块执行文件路径
-
在Python中,我们可以使用os模块来执行文件路径操作。os模块提供了许多函数,用于处理文件和目录路径。获取当前工作目录(CurrentWorkingDirectory,CWD):使用os....
- python:os.path - 常用路径操作模块
-
应该是所有程序都需要用到的路径操作,不废话,直接开始以下是常用总结,当你想做路径相关时,首先应该想到的是这个模块,并知道这个模块有哪些主要功能,获取、分割、拼接、判断、获取文件属性。1、路径获取2、路...
- 原来如此:Python居然有6种模块路径搜索方式
-
点赞、收藏、加关注,下次找我不迷路当我们使用import语句导入模块时,Python是怎么找到这些模块的呢?今天我就带大家深入了解Python的6种模块路径搜索方式。一、Python模块...
- 每天10分钟,python进阶(25)(python进阶视频)
-
首先明确学习目标,今天的目标是继续python中实例开发项目--飞机大战今天任务进行面向对象版的飞机大战开发--游戏代码整编目标:完善整串代码,提供完整游戏代码历时25天,首先要看成品,坚持才有收获i...
- python 打地鼠小游戏(打地鼠python程序设计说明)
-
给大家分享一段AI自动生成的代码(在这个游戏中,玩家需要在有限时间内打中尽可能多的出现在地图上的地鼠),由于我现在用的这个电脑没有安装sublime或pycharm等工具,所以还没有测试,有兴趣的朋友...
- python线程之十:线程 threading 最终总结
-
小伙伴们,到今天threading模块彻底讲完。现在全面总结threading模块1、threading模块有自己的方法详细点击【threading模块的方法】threading模块:较低级...
- Python信号处理实战:使用signal模块响应系统事件
-
信号是操作系统用来通知进程发生了某个事件的一种异步通信方式。在Python中,标准库的signal模块提供了处理这些系统信号的机制。信号通常由外部事件触发,例如用户按下Ctrl+C、子进程终止或系统资...
- Python多线程:让程序 “多线作战” 的秘密武器
-
一、什么是多线程?在日常生活中,我们可以一边听音乐一边浏览新闻,这就是“多任务处理”。在Python编程里,多线程同样允许程序同时执行多个任务,从而提升程序的执行效率和响应速度。不过,Python...
- 用python写游戏之200行代码写个数字华容道
-
今天来分析一个益智游戏,数字华容道。当初对这个游戏颇有印象还是在最强大脑节目上面,何猷君以几十秒就完成了这个游戏。前几天写2048的时候,又想起了这个游戏,想着来研究一下。游戏玩法用尽量少的步数,尽量...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)