使用Python寻找图像最常见的颜色(python 图像查找)
off999 2024-09-14 07:06 41 浏览 0 评论
如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还是未成熟的。
与往常一样,我们可以使用Python和简单但功能强大的库(如Numpy、Matplotlib和OpenCV)来解决这个问题。我将演示如何使用这些软件包在图像中找到最常见的颜色的几种方法。
步骤1-加载包
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import PIL
%matplotlib inline在这里加载基本包,后续会继续加载更多的包。另外,由于我们是用Jupyter编程的,所以不要忘了包含%matplotlib内联命令。
步骤2-加载并显示示例图像
在本教程中,我们将展示两个并排的图像。所以,让我们用一个helper函数来实现。
def show_img_compar(img_1, img_2 ):
 f, ax = plt.subplots(1, 2, figsize=(10,10))
 ax[0].imshow(img_1)
 ax[1].imshow(img_2)
 ax[0].axis('off') # 隐藏轴
 ax[1].axis('off')
 f.tight_layout()
 plt.show()接下来,我们将加载一些在本教程中使用的示例图像,并使用上面的函数演示它们。
img = cv.imread("img/img_1.jpg")
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img_2 = cv.imread("img/img_2.jpg")
img_2 = cv.cvtColor(img_2, cv.COLOR_BGR2RGB)
dim = (500, 300)
# 图像大小自定义
img = cv.resize(img, dim, interpolation = cv.INTER_AREA)
img_2 = cv.resize(img_2, dim, interpolation = cv.INTER_AREA)
show_img_compar(img, img_2)现在我们准备好了。接下来要找出这些图像中最常见的颜色了。
方法1-平均值
第一种方法是最简单的(但无效的),找到平均像素值。
img_temp = img.copy()
img_temp[:,:,0], img_temp[:,:,1], img_temp[:,:,2] = np.average(img, axis=(0,1))
img_temp_2 = img_2.copy()
img_temp_2[:,:,0], img_temp_2[:,:,1], img_temp_2[:,:,2] = np.average(img_2, axis=(0,1))
show_img_compar(img, img_temp)
show_img_compar(img_2, img_temp_2)使用numpy的average函数,我们可以很容易地得到行和宽度轴的平均像素值axis=(0,1)。
我们可以看出,平均法可以给出误导或不准确的结果,因为它给出的最常见的颜色与实际偏离,这是因为平均值结合了所有像素值。当我们有高对比度的图像(在一个图像中“光”和“暗”),如在第二幅图中,这个问题更明显。
它给了我们一种在图像中不明显的新颜色。
方法2-最高像素频率
第二种方法要比第一种方法精确一些,我们只需计算每个像素值中出现的次数。
幸运的是,numpy给了我们另一个函数,这个函数给出了精确的结果。但首先,我们必须重塑图像数据结构,使其仅给出3个值的列表(每个R、G和B通道强度各一个)。
可以简单地使用numpy的reshape函数来获得像素值的列表。
现在我们有了正确结构的数据,我们可以开始计算像素值的频率。只需使用numpy的unique函数,参数return_counts=True。
完成了,接下来在图像上运行。
img_temp = img.copy()
unique, counts = np.unique(img_temp.reshape(-1, 3), axis=0, return_counts=True)
img_temp[:,:,0], img_temp[:,:,1], img_temp[:,:,2] = unique[np.argmax(counts)]
img_temp_2 = img_2.copy()
unique, counts = np.unique(img_temp_2.reshape(-1, 3), axis=0, return_counts=True)
img_temp_2[:,:,0], img_temp_2[:,:,1], img_temp_2[:,:,2] = unique[np.argmax(counts)]
show_img_compar(img, img_temp)
show_img_compar(img_2, img_temp_2)这比第一个更有意义,对吧?最常见的颜色是黑色区域。但我们可以更进一步,如果不只取一种最常见的颜色,而是多取一种呢?用同样的方法,我们可以选择前N种最常见的颜色。但是如果你看第一张图片,频率最高的许多颜色很可能是相邻的颜色,可能只有几个像素的差别。
换言之,我们要取最常见的,不同颜色的簇。
方法3-使用K均值聚类
我们使用Scikit-Learn来实现。我们可以使用K-Means聚类将颜色组聚集在一起。
现在,我们只需要一个函数来显示上面的颜色簇并立即显示出来。
def palette(clusters):
 width=300
 palette = np.zeros((50, width, 3), np.uint8)
 steps = width/clusters.cluster_centers_.shape[0]
 for idx, centers in enumerate(clusters.cluster_centers_): 
 palette[:, int(idx*steps):(int((idx+1)*steps)), :] = centers
 return palette
clt_1 = clt.fit(img.reshape(-1, 3))
show_img_compar(img, palette(clt_1))
clt_2 = clt.fit(img_2.reshape(-1, 3))
show_img_compar(img_2, palette(clt_2))我们只需创建一个高度为50、宽度为300像素的图像来显示颜色组/调色板。对于每个颜色簇,将其指定给调色板。
K-Means聚类在检测图像中最常见的颜色方面给出了很好的结果。在第二张图中,我们可以看到调色板中有太多的棕色阴影。这很可能是因为我们选择了太多的簇。让我们看看是否可以通过选择较小的k值来修复它。
def palette(clusters):
 width=300
 palette = np.zeros((50, width, 3), np.uint8)
 steps = width/clusters.cluster_centers_.shape[0]
 for idx, centers in enumerate(clusters.cluster_centers_): 
 palette[:, int(idx*steps):(int((idx+1)*steps)), :] = centers
 return palette
clt_3 = KMeans(n_clusters=3)
clt_3.fit(img_2.reshape(-1, 3))
show_img_compar(img_2, palette(clt_3))是的,解决了。
由于我们使用K-Means聚类,仍然需要自己确定适当的k。3似乎是个不错的选择。
但我们仍然可以在这些结果的基础上改进。我们也展示一下这些簇在整个图像中所占的比例如何?
方法3.1-K均值+比例显示
我们需要做的就是修改调色板函数。我们不使用固定的步长,而是将每个簇的宽度更改为与该簇中的像素数成比例。
from collections import Counter
def palette_perc(k_cluster):
 width = 300
 palette = np.zeros((50, width, 3), np.uint8)
 n_pixels = len(k_cluster.labels_)
 counter = Counter(k_cluster.labels_) # 计算每个簇有多少像素
 perc = {}
 for i in counter:
 perc[i] = np.round(counter[i]/n_pixels, 2)
 perc = dict(sorted(perc.items()))
 # 用于日志记录
 print(perc)
 print(k_cluster.cluster_centers_)
 step = 0
 for idx, centers in enumerate(k_cluster.cluster_centers_): 
 palette[:, step:int(step + perc[idx]*width+1), :] = centers
 step += int(perc[idx]*width+1)
 return palette
clt_1 = clt.fit(img.reshape(-1, 3))
show_img_compar(img, palette_perc(clt_1))
clt_2 = clt.fit(img_2.reshape(-1, 3))
show_img_compar(img_2, palette_perc(clt_2))这样好多了,它不仅给了我们图像中最常见的颜色。它还提供了每个像素出现的比例。
它也有助于告诉我们应该使用多少个簇。在上面的图像中,两到四个簇似乎是合理的。在第二张图像中,我们至少需要两个簇。不使用一个簇(k=4)的原因是可能会遇到与平均方法相同的问题。
结论
我们介绍了使用Python和一些著名的库来获取图像中最常见颜色的几种技术。另外,我们也看到了这些技术的优缺点。到目前为止,使用K>1的K-Means找到最常见的颜色是在图像中找到最常见颜色的最佳解决方案之一(至少与我们已经使用的其他方法相比)。
Github仓库代码:https://github.com/mrakelinggar/data-stuffs/tree/master/frequent_color。
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
 - 
        
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
 
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
 - 
        
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
 
- 性能测试100集(12)性能指标资源使用率
 - 
        
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
 
- Linux 服务器常见的性能调优_linux高性能服务端编程
 - 
        
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
 
- Nginx性能优化实战:手把手教你提升10倍性能!
 - 
        
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
 
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
 - 
        
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
 
- Kubernetes 高并发处理实战(可落地案例 + 源码)
 - 
        
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
 
- 高并发场景下,Nginx如何扛住千万级请求?
 - 
        
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
 
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
 - 
        
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
 
- Docker-基础操作_docker基础实战教程二
 - 
        
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
 
- 你有空吗?跟我一起搭个服务器好不好?
 - 
        
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
 
- 部署你自己的 SaaS_saas如何部署
 - 
        
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
 
- Docker Compose_dockercompose安装
 - 
        
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
 
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
 - 
        
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
 
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
 - 
        
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
 
欢迎 你 发表评论:
- 一周热门
 - 
                    
- 
                            
                                                                
抖音上好看的小姐姐,Python给你都下载了
 - 
                            
                                                                
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
 - 
                            
                                                                
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
 - 
                            
                                                                
python入门到脱坑 输入与输出—str()函数
 - 
                            
                                                                
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
 - 
                            
                                                                
Python三目运算基础与进阶_python三目运算符判断三个变量
 - 
                            
                                                                
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
 - 
                            
                                                                
慕ke 前端工程师2024「完整」
 - 
                            
                                                                
失业程序员复习python笔记——条件与循环
 - 
                            
                                                                
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
 
 - 
                            
                                                                
 
- 最近发表
 
- 标签列表
 - 
- python计时 (73)
 - python安装路径 (56)
 - python类型转换 (93)
 - python进度条 (67)
 - python吧 (67)
 - python的for循环 (65)
 - python格式化字符串 (61)
 - python静态方法 (57)
 - python列表切片 (59)
 - python面向对象编程 (60)
 - python 代码加密 (65)
 - python串口编程 (77)
 - python封装 (57)
 - python写入txt (66)
 - python读取文件夹下所有文件 (59)
 - python操作mysql数据库 (66)
 - python获取列表的长度 (64)
 - python接口 (63)
 - python调用函数 (57)
 - python多态 (60)
 - python匿名函数 (59)
 - python打印九九乘法表 (65)
 - python赋值 (62)
 - python异常 (69)
 - python元祖 (57)
 
 
