百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python之封装mock(python如何封装一个模块)

off999 2024-10-01 14:07 44 浏览 0 评论

1.patch装饰器的概念

  • patch装饰器是mock第二种实现数据模拟的方式,patch()充当函数装饰器,类装饰器或上下文管理器,可用于处理测试范围内的修补模块和类级属性;

2.patch装饰器语法

  • 语法:unittest.mock.patch(target,new = DEFAULT,spec = None,create = False,spec_set = None,autospec = None,new_callable = None,** kwarg );
  • 参数target 为'package.module.classname'格式的字符串,如果参数new被省略,那么target 被MagicMock代替;
  • 如果patch()用作装饰器并且省略new,则创建的mock将作为额外参数传递给装饰函数,如果patch()用作上下文管理器,则上下文管理器返回创建的mock;
  • New_Callable参数允许指定将被调用以创建新对象的其他类或可调用对象,默认情况下,使用magicMock。

3.patch装饰器实现数据模拟

修改Test.py文件中的TestData类,在测试用例前加上一个@mock.patch()装饰器

from unittest import mock
from unittest import TestCase
import unittest
import function1

class TestData(TestCase):

 # patch装饰器
 @mock.patch('function1.data_parse')
 def test_print1(self, mock_data_parse):
 mock_data_parse.return_value = {"result": "success", "reason":"null"}
 statues = function1.data_show()
 print(statues)
 self.assertEqual(statues, "data parse success")

 @mock.patch('function1.data_parse')
 def test_print2(self, data_parse):
 data_parse.return_value = {"result": "fail", "reason": "Data Error"}
 statues = function1.data_show()
 self.assertEqual(statues, "data parse failed")

if __name__ == "__main__":
 unittest.main()

我们这里模拟的是函数中的数据,如果需要mock的数据是一个类中方法的数据,写法也是一样的,比如function1.py模块中的代码是:

class DataParse:
 def data_parse(self):
 pass

class DataShow:
 def data_show(self):
 ret = DataParse().data_parse()
 try:
 if ret.get('result') == "success":
 return "data parse success"
 elif ret.get('result') == "fail":
 print("data parse failed: {}".format(ret.get('reason')))
 return "data parse failed"
 else:
 return "Unknow Reason"
 except:
 return "Server Unknow Reason"

那Test.py文件中的代码可以这样写:

from unittest import mock
from unittest import TestCase
import unittest
from function1 import DataParse, DataShow

class TestData(TestCase):

 # patch装饰器
 @mock.patch('function1.DataParse')
 def test_print1(self, mock_DataParse):
 # 先拿到类的mock实例
 dataParse = mock_DataParse.return_value
 # 在通过类的mock实例调用方法,对方法返回值进行mock
 dataParse.data_parse.return_value = {"result": "success", "reason":"null"}
 # 调用data_show
 statues = DataShow().data_show()
 print(statues)
 self.assertEqual(statues, "data parse success")

 @mock.patch('function1.DataParse')
 def test_print2(self, mock_DataParse):
 # 先拿到类的mock实例
 dataParse = mock_DataParse.return_value
 # 在通过类的mock实例调用方法,对方法返回值进行mock
 dataParse.data_parse.return_value = {"result": "fail", "reason": "Data Error"}
 # 调用data_show
 statues = DataShow().data_show()
 print(statues)
 self.assertEqual(statues, "data parse failed")

if __name__ == "__main__":
 unittest.main()


=========输出=============
data parse success
data parse failed: Data Error
data parse failed

步骤

  • 首先使用@mock.patch()装饰器来装饰你要使用的测试用例,@mock.patch()中需要带一个参数,指定需要mock的函数或者类,和这个类所在的包和模块,例如:@mock.patch(''function1.data_parse''),表示给一个在function1模块中的data_parse函数mock数据;
  • 然后在测试用例中接受一个参数,这个参数是mock哪个函数,就在函数名前加一个mock,例如给data_parse函数mock数据,这个参数名就是mock_data_parse;
  • 有了这个参数之后就可以给mock的函数的return_value赋值了。最后就可以进行断言,运行测试了;

参考:https://www.9xkd.com/user/plan-view.html?id=1585826642

相关推荐

实战:用 Python+Flask+Echarts 构建电商实时数据大屏

在电商运营中,实时掌握销售趋势、用户行为等核心数据是决策的关键。本文将从实战角度,详解如何用Python+Flask+Echarts技术栈,快速搭建一个支持实时更新、多维度可视化的电商数据大屏,帮...

DeepSeek完全使用手册:从新手到高手的2000字实操指南

一、工具定位与核心功能矩阵(200字)DeepSeek是一款专注于深度推理的强大AI助手,其功能丰富多样,可归纳为4大能力象限:plaintext差异化优势:DeepSeek支持最长达16Ktok...

Python绘制可爱的图表 cutecharts

一个很酷的python手绘样式可视化包——可爱的图表cutecharts。Cutecharts非常适合为图表提供更个性化的触感。Cutecharts与常规的Matplotlib和Seabo...

第十二章:Python与数据处理和可视化

12.1使用pandas进行数据处理12.1.1理论知识pandas是Python中最常用的数据处理库之一,它提供了高效的数据结构和数据分析工具。pandas的核心数据结构是Serie...

5分钟就能做一个Excel动态图表,你确定不学学?(纯gif教学)

本文说明下图是一个比较酷炫的Excel动态图表,最难的部分就是用到了一个复选框控件。其实这个控件我很早就见过,但是不会用呀!望洋兴叹。这次呢,我也是借着这个文章为大家讲述一下这个控件的使用。本文没有...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

如何使用 Python 将图表写入 Excel

将Python生成的图表写入Excel文件是数据分析和可视化中常见的需求。Python提供了多种库(如matplotlib、openpyxl和xlsxwriter)来实现这一功能。本文...

Excel 图表制作太痛苦?用 Python 生成动态交互图表

做个动态图表花了3小时?你该换方法了!上周帮销售部做季度汇报图表,Excel操作把我整崩溃了——插入折线图后发现数据源选错,重新选择又得调格式想做动态筛选图表,捣鼓"开发工具"...

Python Matplotlib 入门教程:可视化数据的基石

一、简介Matplotlib是Python中最流行的数据可视化库,提供从简单折线图到复杂3D图形的完整解决方案。其核心优势在于:o灵活性强:支持像素级样式控制o兼容性好:与NumPy、Pa...

20种Python数据可视化绘图 直接复制可用

本文介绍20种python数据绘图方法,可直接用于科研绘图或汇报用图。1.折线图(LinePlot)-描述数据随时间或其他变量的变化。importmatplotlib.pyplotasp...

Python os模块完全指南:轻松玩转文件管理与系统操作

Pythonos模块完全指南:轻松玩转文件管理与系统操作os模块是Python与操作系统对话的"瑞士军刀",学会它能让你轻松管理文件、操控路径、获取系统信息。本教程通过场景化案例+...

Python中h5py与netCDF4模块在Anaconda环境的下载与安装

本文介绍基于Anaconda环境,下载并安装Python中h5py与netCDF4这两个模块的方法。h5py与netCDF4这两个模块是与遥感图像处理、地学分析等GIS操作息息相关的模块,应用...

python中的模块、库、包有什么区别?

一文带你分清Python模块、包和库。一、模块Python模块(Module),是一个Python文件,以.py结尾,包含了Python对象定义和Python语句。模块能定义函数,类和变...

centos7 下面使用源码编译的方式安装python3.11

centos7下面使用源码编译的方式安装python3.11,步骤如下:cd/root#只是将python3.11的安装包下载到/root目录下wgethttps://www.python.o...

Python其实很简单 第十四章 模块

模块是一组程序代码,可以是别人已经写好的,也可以是自己编写的,但都是已经存在的,在编程时直接使用就可以了。模块机制的最大好处就是程序员不再编写重复的代码,而直接利用已有的成果,这样就能将更多的精力投入...

取消回复欢迎 发表评论: