百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python3爬虫基础:正则表达式爬取猫眼信息写入txt,csv

off999 2024-10-04 00:20 25 浏览 0 评论

前言

正则表达式是对字符串的一种逻辑公式,用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则的字符串”,此字符串用来表示对字符串的一种“过滤”逻辑。正在在很多开发语言中都存在,而非python独有。对其知识点进行总结后,会写一个demo。

有需要Python学习资料的小伙伴吗?小编整理【一套Python资料、源码和PDF】,感兴趣者可以关注小编后私信学习资料(是关注后私信哦)反正闲着也是闲着呢,不如学点东西啦

1.正则表达式

python是自1.5开始引进re模块进行处理正则的。我先把正则的匹配规则总结一下,再总结re模块相应的方法。

1.1匹配规则

对于一个特殊字符在正则表达式中是不能正常识别的,如果接触过其他语言我们就这到有一个叫做转移字符的东西的存在,在特殊字符前加用反斜杠接口。比如\n换行\\为反斜杠,在这不再累述。下面来介绍一下re这个模块。

1.2.re模块

此模块主要方法如下

re.match()#尝试从字符串的起始位置匹配一个模式(pattern),如果不是起始位置匹配成功的话,match()就返回None
re.search()#函数会在字符串内查找模式匹配,只要找到第一个匹配然后返回,如果字符串没有匹配,则返回None。
re.findall()#遍历匹配,可以获取字符串中所有匹配的字符串,返回一个列表。
re.compile()#编译正则表达式模式,返回一个对象的模式。(可以把那些常用的正则表达式编译成正则表达式对象,这样可以提高一点效率。)
re.sub()#使用re替换string中每一个匹配的子串后返回替换后的字符串。
re.subn()#返回替换次数
re.split()#按照能够匹配的子串将string分割后返回列表。

1.2.1.re.match()

方法: re.match(pattern, string, flags=0) # pattern:正则表达式(或者正则表达式对象)string:要匹配的字符串flags:修饰符

先看一个最简单的用法

import re
content ='Hello 123 4567 wangyanling REDome'
print(len(content))
result = re.match('^Hello\s\d\d\d\s\d{4}\s\w{10}.*Dome
, content) print(result) print(result.group()) print(result.span())

结果:

匹配规则就不在累述,以上需要注意的是

(1) .group() 表示的是返回正则匹配的结果

(2) .span() 表示返回正则匹配的范围

使用:

以上我们已经知道re.matcha()的具体方法,那么接下我来看一下具体使用,对此我们要理解以下几种匹配的感念。

1.泛匹配(.*):匹配所有字符

import re
content ='Hello 123 4567 wangyanling REDome'
result = re.match('^Hello.*Dome
, content) print(result) print(result.group()) print(result.span())

它的结果是和上面的输出结果完全一样的。

2.目标匹配(()):将需要的字符匹配出来

import re
content ='Hello 123 4567 wangyanling REDome'
result = re.match('^Hello\s\d\d(\d)\s\d{4}\s\w{10}.*Dome
, content) print(result) print(result.group(1)) import re content ='Hello 123 4567 wangyanling REDome' result = re.match('^Hello\s(\d+)\s\d{4}\s\w{10}.*Dome
, content) print(result) print(result.group(1))

结果

以上可以看出:

(1) () 匹配括号内的表达式,也表示一个组

(2) + 匹配1个或多个的表达式

*匹配0个或多个的表达式

(3) .group(1) —输出第一个带有()的目标

3.贪婪匹配(.*()):匹配尽可能少的的结果

import re
content ='Hello 123 4567 wangyanling REDome'
result = re.match('^H.*(\d+).*Dome
, content) print(result) print(result.group(1))

结果

4.贪婪匹配(.*?()):匹配尽可能多的结果

import re
content ='Hello 123 4567 wangyanling REDome'
result = re.match('^H.*?(\d+).*?Dome
, content) print(result) print(result.group(1))

结果

以上3,4两个匹配方式请尽量采用非贪婪匹配

5.其他

换行:

import re
content ='''Hello 123 4567 
 wangyanling REDome'''
result = re.match('^H.*?(\d+).*?Dome
, content,re.S)#re.S print(result.group(1)) result = re.match('^H.*?(\d+).*?Dome, content) print(result.group(1))

结果:

转义字符:

import re
content = 'price is $5.00'
result = re.match('price is $5.00', content)
print(result)
result = re.match('price is \$5\.00', content)
print(result)

结果:

其中re.I使匹配对大小不敏感,re.S匹配包括换行符在内的所有字符,\进行处理转义字符。匹配规则中有详细介绍。

1.2.2.re.search()

方法:

re.search(pattern, string, flags=0)#pattern:正则表达式(或者正则表达式对象)string:要匹配的字符串flags:修饰符
 #re.match()和re.search()用法类似唯一的区别在于re.match()从字符串头开始匹配,若头匹配不成功,则返回None 

对比一下与match()

import re
content ='Hello 123 4567 wangyanling REDome'
result = re.match('(\d+)\s\d{4}\s\w{10}.*Dome, content)
print(result)#从开头开始查找,不能匹配返回None
result = re.search('(\d+)\s\d{4}\s\w{10}.*Dome, content)
print(result)
print(result.group())

结果:

可以看出两个使用基本一致,search从头开始匹配,如果匹配不到就返回none.

1.2.3.re.findall()

方法: re.finditer(pattern, string, flags=0) # pattern:正则表达式(或者正则表达式对象)string:要匹配的字符串flags:修饰符

与re.search()类似区别在于re.findall()搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。找到 RE 匹配的所有子串,并把它们作为一个迭代器返回。

import re
html = '''
 <div>
 <li><a href="" singer="鲁迅">呐喊</a></li>
 <li><a href="#" singer="贾平凹">废都</a></li>
 <li class="active"><a href="#" singer="路遥">平凡世界</a></li>
 <span class="rightSpan">谢谢支持</span>
 </div>
'''
regex_4='<a.*?>(.*?)</a>'
results=re.findall(regex_4,html,re.S)
print(results)
for result in results:
 print(result)

结果:

1.2.4.re.compile()

编译正则表达式模式,返回一个对象的模式。

方法: re.compile(pattern,flags=0) # pattern:正则表达式(或者正则表达式对象);flags:修饰符

看一个demo

import re
content ='Hello 123 4567 wangyanling REDome wangyanling 那小子很帅'
rr = re.compile(r'\w*wang\w*')
result =rr.findall(content)
print(result)

结果:

我们可以看出compile 我们可以把它理解为封装了一个公用的正则,类似于方法,然后功用。

1.2.5.其他

re.sub 替换字符

方法: re.sub(pattern, repl, string, count=0, flags=0) # pattern:正则表达式(或者正则表达式对象)repl:替换的字符串string:要匹配的字符串count:要替换的个数flags:修饰符

re.subn 替换次数

方法: re.subn(pattern, repl, string, count=0, flags=0) # pattern:正则表达式(或者正则表达式对象)repl:替换的字符串string:要匹配的字符串count:要替换的个数flags:修饰符

re.split()分隔字符

方法

re.split(pattern, string,[maxsplit])#正则表达式(或者正则表达式对象)string:要匹配的字符串;maxsplit:用于指定最大分割次数,不指定将全部分割

2.案例:爬取猫眼信息,写入txt,csv,下载图片

2.1.获取单页面信息

def get_one_page(html):
 pattern= re.compile('<dd>.*?board-index.*?>(\d+)</i>.*?data-src="(.*?)".*?name"><a.*?>(.*?)</a>.*?star">(.*?)</p>.*?releasetime'
 + '.*?>(.*?)</p>.*?score.*?integer">(.*?)</i>.*?>(.*?)</i>.*?</dd>',re.S)#这里就用到了我们上述提到的一些知识点,非贪婪匹配,对象匹配,修饰符
 items = re.findall(pattern,html)
 for item in items:
 yield {
 'rank' :item[0],
 'img': item[1],
 'title':item[2],
 'actor':item[3].strip()[3:] if len(item[3])>3 else '', 
 'time' :item[4].strip()[5:] if len(item[4])>5 else '',
 'score':item[5] + item[6]
 }

对于上面的信息我们可以看出是存到一个对象中那么接下来我们应该把它们存到文件当中去。

2.2.保存文件

我写了两种方式保存到txt和csv这些在python都有涉及,不懂得可以去翻看一下。

2.2.1.保存到txt

def write_txtfile(content):
 with open("Maoyan.txt",'a',encoding='utf-8') as f:
 #要引入json,利用json.dumps()方法将字典序列化,存入中文要把ensure_ascii编码方式关掉
 f.write(json.dumps(content,ensure_ascii=False) + "\n")
 f.close()

结果:


以上看到并非按顺序排列因为我用的是多线程。

2.2.2.保存到csv

def write_csvRows(content,fieldnames):
 '''写入csv文件内容'''
 with open("Maoyao.csv",'a',encoding='gb18030',newline='') as f:
 #将字段名传给Dictwriter来初始化一个字典写入对象
 writer = csv.DictWriter(f,fieldnames=fieldnames)
 #调用writeheader方法写入字段名
 writer.writerows(content)
 f.close()

结果:

那么还有一部就是我们要把图片下载下来。

2.2.3.下载图片

def download_img(title,url):
 r=requests.get(url)
 with open(title+".jpg",'wb') as f:
 f.write(r.content)

2.3.整体代码

这里面又到了多线程在这不在叙述后面会有相关介绍。这个demo仅做一案例,主要是对正则能有个认知。上面写的知识点有不足的地方望大家多多指教。

#抓取猫眼电影TOP100榜
from multiprocessing import Pool
from requests.exceptions import RequestException
import requests
import json
import time
import csv
import re
def get_one_page(url):
 '''获取单页源码'''
 try:
 headers = {
 "User-Agent":"Mozilla/5.0(WindowsNT6.3;Win64;x64)AppleWebKit/537.36(KHTML,likeGecko)Chrome/68.0.3440.106Safari/537.36"
 }
 res = requests.get(url, headers=headers)
 # 判断响应是否成功,若成功打印响应内容,否则返回None
 if res.status_code == 200:
 return res.text
 return None
 except RequestException:
 return None
def parse_one_page(html):
 '''解析单页源码'''
 pattern = re.compile('<dd>.*?board-index.*?>(\d+)</i>.*?data-src="(.*?)".*?name"><a.*?>(.*?)</a>.*?star">(.*?)</p>.*?releasetime'
 + '.*?>(.*?)</p>.*?score.*?integer">(.*?)</i>.*?>(.*?)</i>.*?</dd>',re.S)
 items = re.findall(pattern,html)
 #采用遍历的方式提取信息
 for item in items:
 yield {
 'rank' :item[0],
 'img': item[1],
 'title':item[2],
 'actor':item[3].strip()[3:] if len(item[3])>3 else '', #判断是否大于3个字符
 'time' :item[4].strip()[5:] if len(item[4])>5 else '',
 'score':item[5] + item[6]
 }
def write_txtfile(content):
 with open("Maoyan.txt",'a',encoding='utf-8') as f:
 #要引入json,利用json.dumps()方法将字典序列化,存入中文要把ensure_ascii编码方式关掉
 f.write(json.dumps(content,ensure_ascii=False) + "\n")
 f.close()
def write_csvRows(content,fieldnames):
 '''写入csv文件内容'''
 with open("Maoyao.csv",'a',encoding='gb18030',newline='') as f:
 #将字段名传给Dictwriter来初始化一个字典写入对象
 writer = csv.DictWriter(f,fieldnames=fieldnames)
 #调用writeheader方法写入字段名
 #writer.writeheader() ###这里写入字段的话会造成在抓取多个时重复.
 writer.writerows(content)
 f.close()
def download_img(title,url):
 r=requests.get(url)
 with open(title+".jpg",'wb') as f:
 f.write(r.content)
def main(offset):
 fieldnames = ["rank","img", "title", "actor", "time", "score"]
 url = "http://maoyan.com/board/4?offset={0}".format(offset)
 html = get_one_page(url)
 rows = []
 for item in parse_one_page(html):
 #download_img(item['rank']+item['title'],item['img'])
 write_txtfile(item)
 rows.append(item)
 write_csvRows(rows,fieldnames)
if __name__ == '__main__':
 pool = Pool()
 #map方法会把每个元素当做函数的参数,创建一个个进程,在进程池中运行.
 pool.map(main,[i*10 for i in range(10)])

有需要Python学习资料的小伙伴吗?小编整理【一套Python资料、源码和PDF】,感兴趣者可以关注小编后私信学习资料(是关注后私信哦)反正闲着也是闲着呢,不如学点东西啦

相关推荐

让 Python 代码飙升330倍:从入门到精通的四种性能优化实践

花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...

7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制

“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...

Python3.14:终于摆脱了GIL的限制

前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...

Python Web开发实战:3小时从零搭建个人博客

一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...

图解Python编程:从入门到精通系列教程(附全套速查表)

引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...

Python 并发编程实战:从基础到实战应用

并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...

吴恩达亲自授课,适合初学者的Python编程课程上线

吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...

Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件

在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...

Python turtle模块编程实践教程

一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...

Python 中的asyncio 编程入门示例-1

Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...

30天学会Python,开启编程新世界

在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...

Python基础知识(IO编程)

1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...

Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!

Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...

一文带你了解Python Socket 编程

大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...

Python-面向对象编程入门

面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...

取消回复欢迎 发表评论: