百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

基于Python的开源人脸识别库:离线识别率高达99.38%

off999 2024-10-04 00:31 13 浏览 0 评论

选自Github

机器之心编译

参与:路雪

仅用 Python 和命令行就可以实现人脸识别的库开源了。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。

该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员。

有了世界上最简单的人脸识别库,使用 Python 或命令行,即可识别和控制人脸。

该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。

这也提供了一个简单的 face_recognition 命令行工具,你可以打开命令行中任意图像文件夹,进行人脸识别!

项目地址:https://github.com/ageitgey/face_recognition#face-recognition

特征

找出图片中的人脸

找出下面图片中所有的人脸:

import face_recognition

找到并且控制图像中的脸部特征

找到并勾勒出每个人的眼睛、鼻子、嘴和下巴。

import face_recognition

找出脸部特征对很多重要的事情都非常有用。但是你也可以用它来做一些「蠢事」,比如数字化妆(美图):

识别图片中的人脸

识别每张图片中的人物。

import face_recognition

你甚至可以使用该库和其他的 Python 库执行实时人脸识别:

此处可查看代码示例:https://github.com/ageitgey/face_recognition/blob/master/examples/facerec_from_webcam_faster.py

安装

要求:

  • Python 3+ 或 Python 2.7

  • macOS 或 Linux (Windows 未测试)

  • 还可在树莓派 2+上运行(按照具体指令来安装运行:https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65)

  • 预配置的 VM 图像同样可用。

使用pin3从pypi安装这一模块:

pip3 install face_recognition

重要提示:pip 尝试编译 dlib 依赖时很可能会遇到一些问题。如果遇到问题,前往该地址(https://gist.github.com/ageitgey/629d75c1baac34dfa5ca2a1928a7aeaf)从来源(而不是 pip)中安装 dlib,从而修复该错误。

手动安装 dlib 后,再次运行 pip3 install face_recognition,完成安装。

如果安装方面还有问题,你还可以试试预配置的 VM(https://medium.com/@ageitgey/try-deep-learning-in-python-now-with-a-fully-pre-configured-vm-1d97d4c3e9b)

用途

命令行界面

安装 face_recognition 时,你会得到一个名为 face_recognition 的简单命令行程序,该程序可用于识别照片或装满照片的文件夹中的人脸。

首先,你需要提供一个包含图片的文件夹,且每张图片中的每个人你都认识。每个人有一个图像文件,文件名就是图片中人物的名字:

然后,你需要再建一个文件夹,包含你想要识别的图像文件:

之后,你仅需要在已知人物文件夹和未知人物文件夹(或单个图像)中运行 face_recognition 命令,该程序会告诉你每个图像中的人物是谁:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures//unknown_pictures/unknown.jpg,Barack Obama

每张人脸的输出结果只有一行,由文件名和找到的人物名组成,中间用逗号分隔。

unknown_person 是未与已知人物文件夹中任何照片相匹配的人脸。

如果你只想知道每张照片中的人物姓名,不在意文件名,那么你可以采用以下做法:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/ | cut -d ',' -f2

如果你的电脑配有多核 CPU,你就可以同时执行多个人脸识别任务。例如,如果你的系统有 4 个 CPU 核,你可以同时使用这 4 个 CPU 核,那么同样时间内处理的图像数量是原来的四倍。

如果你使用 Python 3.4 或更新的版本,传入--cpus <number_of_cpu_cores_to_use>参数:

$ face_recognition -cpus 4 ./pictures_of_people_i_know/ ./unknown_pictures/

你还可以传入--cpus -1,来使用系统中所有的 CPU 核。

Python 模块

使用 face_recognition 模块,几行代码轻松控制人脸,so easy!

API 文件地址:https://face-recognition.readthedocs.io

自动定位图像中人物的脸部特征

import face_recognition

图像人脸识别

import face_recognition

注意事项

该人脸识别模型基于成年人照片训练,因此对儿童照片的识别效果不好。该模型默认比较阈值是 0.6,容易混淆儿童的面部。

将该模型配置到云主机(Heroku、AWS 等)

face_recognition 赖以存在的 dlib 是用 C++语言写的,因此将该内置该模型的 app 配置到 Heroku 或 AWS 等云主机提供商就很复杂。在该 repo 中有一个 Dockerfile 示例,展示如何在 Docker 容器中运行内置 face_recognition 模型的 app(详见该网址:https://www.docker.com/)。参考该示例,您能够将该模型配置到任何支持 Docker 图像的服务。

常见问题

问题:使用 face_recognition 或运行样本时,出现 Illegal instruction (core dumped)。

解决方案:dlib 需要在 SSE4 或 AVX 支持下编译,但是你的 CPU 太旧,无法支持编译。你需要根据此处(https://github.com/ageitgey/face_recognition/issues/11#issuecomment-287398611)所示修改代码,然后对 dilb 进行重新编译。

问题:运行摄像头样本时,出现 RuntimeError: Unsupported image type, must be 8bit gray or RGB image.

解决方案:你的摄像头可能并未在 OpenCV 上正确设置。点击此处(https://github.com/ageitgey/face_recognition/issues/21#issuecomment-287779524)了解更多。

问题:运行 pip2 install face_recognition 时出现 MemoryError。

解决方案:face_recognition_models 文件太大,不适合你可用的 pip 缓存内存。试一下 pip2 --no-cache-dir install face_recognition,解决该问题。

问题:AttributeError: 'module' object has no attribute 'face_recognition_model_v1'

解决方案:你安装的 dlib 版本过旧,需要 19.4 或者更新的版本。请升级 dlib 版本。

问题:TypeError: imread() got an unexpected keyword argument 'mode'

解决方案:你安装的 scipy 版本过旧,需要 0.17 或者更新的版本。请升级 scipy 版本。

相关推荐

Python自动化脚本应用与示例(python自动化脚本教程)

Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作O批量重命名文件...

如何使用Python实现一个APP(如何用python做一个程序)

要使用Python实现一个APP,你可以选择使用一些流行的移动应用开发框架,如Kivy、PyQt或Tkinter。这里以Kivy为例,它是一个跨平台的Python框架,可以用于创建漂亮的图形用户界面(...

免费定时运行Python程序并存储输出文档的服务推荐

免费定时运行Python程序并存储输出文档的服务推荐以下是几种可以免费定时运行Python程序并存储输出结果的云服务方案:1.PythonAnywhere特点:提供免费的Python托管环境支持定时...

【Python程序开发系列】如何让python脚本一直在后台保持运行

这是我的第385篇原创文章。一、引言让Python脚本在后台持续运行,有几种常见的方式,具体方式可以根据你的系统环境和需求选择。二、Linux或macOS系统2.1使用nohup命令no...

运行和执行Python程序(运行python的程序)

一、Python是一种解释型的脚本编程语言,这样的编程语言一般支持两种代码运行方式:交互式编程在命令行窗口中直接输入代码,按下回车键就可以运行代码,并立即看到输出结果;执行完一行代码,你还可以继续...

Python 初学者指南:计算程序的运行时长

在编写Python程序时,了解程序的运行时长是一项很有用的技能。这不仅能帮助你评估代码的效率,还能在优化程序性能时提供关键的数据支持。对于初学者来说,计算程序运行时长其实并不复杂,接下来就让我们看...

pyest+appium实现APP自动化测试,思路全总结在这里

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01appium环境搭建安装nodejshttp://nodej...

血脉觉醒后,编程小白我是如何通过Deepseek和Trae轻松开发软件的

以下就是作为一个编程小白的我,是如何一步步开发软件的保姆级教程,请点赞收藏:第一步:打开#deepseek#(首先关闭深度思考和联网搜索)输入或复制你要让它做一个什么样软件的要求和提示词(你可以先用...

我用Deepseek+Trae写的python小软件,小白也能轻松用上模型啦!

利用AI大模型deepseek,搭配TraeCN,用半个小时做了一个本地Ollama安装部署和一键卸载的小工具,哈哈哈!感觉还不错#deepseek#一直想做一个本地Ollama安装部署和一键卸载...

在安卓设备上运行Python的方法(安卓能运行python吗)

技术背景在安卓设备上运行Python可以为开发者提供更多的开发选择和灵活性,能够利用Python丰富的库和简洁的语法来开发各种应用,如游戏、脚本工具等。然而,由于安卓系统原生不支持Python,需要借...

零基础小白,DeepSeek全自动编程,超详细提示词,一键生成软件!

我前面发表了文章,详细说了编程零基础小白,如何利用DeepSeek进行编程的全过程,感兴趣的可以去看看:DeepSeek全自动编程很多人不会写提示词,不知道怎么开始对话。话不多说,请先看下图中的对话,...

小白用DeepSeek+Python编写软件(用python制作软件)

周末无事,用DeepSeek生成全部代码,写了一个mp3音乐播放器,几分钟搞定,DeepSeek确实太强大了。我的提示语是这么写的:“请用Python语言写一个音乐播放器,支持常见音乐格式,我是Pyt...

零基础使用DeepSeek开发Windows应用程序,超简单超实用!

你敢相信,我居然用DeepSeek开发了一个能用的Windows软件!整个过程就像和学霸同桌组队做作业,我负责提需求,DeepSeek负责写代码改bug,全程碰到任何问题直接丢给DeepSeek即可。...

第二篇:如何安装Python并运行你的第一个程序

欢迎回到我的Python入门教程系列!在上一篇中,我们讨论了为什么Python是一门值得学习的编程语言。今天,我们将迈出第一步:安装Python并运行你的第一个程序。无论你是Windows、macOS...

Python 运行,带你找入口,快速读懂程序

有C或Java编程开发经验的软件开发者,初次接触python程序,当你想快速读懂python项目工程时,是否觉得python程序有些太过随意,让你看有些无所适从,进而有些茫然。这是...

取消回复欢迎 发表评论: