百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

傻傻分不清系列 | Python中各种字符串处理方法

off999 2024-09-14 07:08 14 浏览 0 评论

Python易混淆知识系列:Pandas字符串方法和字符串内建函数,使用Python的一个优势就是字符串处理起来比较容易。

Python的初学者在学习字符串内建函数的时候往往会很困惑:字符串的内建函数是对单个字符串对象处理,如果要对成千上万个字符串对象处理该怎么办?

不少已经使用Python工作很长时间的同学,即使已经学会使用Pandas对象的.apply()方法来处理字符串,依然会时常忘记:其实Pandas已经自带功能强大的向量化字符串操作。

即使知道Pandas字符串方法的同学,使用的时候也经常与字符串内建函数混淆。

而熟练使用Pandas字符串方法的同学往往会觉得,其方法的代码简洁性与运行效率都远高于其他的写法。真相到底如何?Pandas字符串方法和字符串内建函数有什么不同?运算效率真的像传闻那么高吗?

今天我们就好好捋一下这块Python易混淆的知识点。

1. 快速入门向量化字符串操作

初学Python字符串内建函数的同学肯定知道有个叫.lower()的方法可以将字符串中的大写英文字母转化为小写,比如将字符串对象’ABCD’转化为小写:

点击添加图片描述(最多60个字)编辑

如果字符型的Series对象中的字符串要转化为小写呢?比如:

点击添加图片描述(最多60个字)编辑

此时,我们就可以使用Series的str方法中的.lower()来处理:

点击添加图片描述(最多60个字)编辑

同理,如果要将Series对象中的所有的大写字母变成小写,可以使用.str.upper()。

看到这里,相信很多没有使用过Pandas字符串方法的同学会惊奇地发现,这跟字符串对象的内建函数差不多呀?只不过多了一个通过.str()方法调用函数的过程。

确实,大多数Pandas的字符串方法借鉴了Python字符串内建函数的内容,这里给大家梳理一下,两种处理字符串方法基本相同的地方:

· 求字符串长度

§ .str.len()

· 字符检索

§ .str.find()和.str.rfind()

§ .str.index()和.str.rindex()

· 字符转换

§ .str.lower()和.str.upper()

§ .str.title()和.str.capitalize()

§ .str.swapcase()

· 字符类型判断

§ .str.islower()和.str.isupper()

§ .str.isnumeric()、.str.isalnum()、.str.isdecimal()、.str.isalpha()、.str.isdigit()

§ .str.isspace()

§ .str.istitle()

· 字符对齐与填充

§ .str.startswith()和.str.endswith()

§ .str.center()

§ .str.ljust()和.str.rjust()

· 字符分隔

§ .str.split()和.str.rsplit()

§ .str.partition()和.str.rpartition()

· 字符整理

§ .str.strip()、.str.rstrip()、.str.lstrip()

以上方法都是Pandas字符串方法与Python字符串内建函数中基本一致的部分,无论是方法名还是调用过程,只有少部分有少许区别。

2. 其他字符串方法

除了与字符串内建函数类似的方法以外,Pandas还有一些功能强大的字符串方法。

(1) 向量化字符串的取值和切片操作

很多同学会很疑惑,字符串对象可以进行取值和切片操作,但是Pandas对象中的字符串如何进行相同的操作?比如以上面的Series对象为例:

点击添加图片描述(最多60个字)编辑

如果想把上面Series对象中所有字符串中的前三个字母取出来,可以通过调用.str属性后,返回的对象直接使用和字符串切片一样的方法:

点击添加图片描述(最多60个字)编辑

此外还可以使用.str.slice()方法,其参数与切片方法的类似:

点击添加图片描述(最多60个字)编辑

但是如果想根据字符串索引来取单个字符元素,可以通过.str.get()方法来进行。比如上面的Series对象a中,我们想要取里面所有字符串索引值为1的元素,可以写a.str.get(1):

点击添加图片描述(最多60个字)编辑

(2) 字符串拼接

Python中多个字符串对象拼接非常简单,直接使用加法运算符就可以了,比如:

点击添加图片描述(最多60个字)编辑

这种便捷的方法,Series对象也同样沿用下来,可以将多个字符型Series对象用加法运算符直接相加:

点击添加图片描述(最多60个字)编辑

但是Pandas字符串方法中有更加强大的字符串拼接功能,那就是.str.cat()方法。

实现上面同样的字符串拼接,如果我们使用.str.cat()方法,可以这样写:

点击添加图片描述(最多60个字)编辑

也就是说,第一个Series对象调用.str.cat()方法,该方法第一个参数可以用列表的形式来把其他需要合并的Series对象写进来。

当然,.str.cat()方法功能强大,比如可以选择使用参数sep来自定义分隔符来合并,我们使用“|”来连接上面的三个Series对象:

点击添加图片描述(最多60个字)编辑

(3) 字符替换操作

字符串内建函数有便捷的字符替换方法.replace(),比如我们想字符串’abcd’中的’a’替换成’A’:

点击添加图片描述(最多60个字)编辑

同样地,Pandas字符串方法也有一样的操作:

点击添加图片描述(最多60个字)编辑

当然,如果想通过索引值或者切片来指定替换呢?比如我们想将str_01中的所有字符串中索引值0到2的元素替换成符号‘*’,我们就需要使用.str.slice_replace(),替换对象以参数repl来指定:

点击添加图片描述(最多60个字)编辑

(4) 快速独热编码

独热编码无论在特征工程中还是问卷数据处理中都应用广泛,我们需要转码的字符如下图表示,该怎么办?

点击添加图片描述(最多60个字)编辑

想看到这,熟练使用Pandas的apply()方法的同学会开始绞尽脑汁写自定义函数来完成这么复杂的编码规则。其实,我们可以直接使用Pandas字符串方法.str.get_dummies()来完成独热编码,如下:

点击添加图片描述(最多60个字)编辑

如果非常不幸,我们的字符串中的分隔符”|”都不存在,该怎么办?

点击添加图片描述(最多60个字)编辑

此时我们可以使用搭配使用.str.join()方法,将“|”插入到上面Series对象中每个字符串对象的每个元素之间:

点击添加图片描述(最多60个字)编辑

上面生成的对象最后再次调用.str.get_dummies()方法即可:

点击添加图片描述(最多60个字)编辑

3. 代码量与运算效率PK

从上面我们可以看到,Pandas的字符串方法实现了很多我们意想不到的操作的同时,大大简化了代码书写的复杂程度。

接下来,我们对比一下,在文本数据量较大的时候,使用Pandas字符串方法和使用字符串内建函数,在代码量上和代码运算效率上作一番比较。

我们以最为常用的几个使用场景来举例子,分别是字符切片、替换、拼接、去除前后特殊字符。

下面用到的内存分析魔法函数,需要先在pip安装扩展memory_profiler:

pip install memory_profiler

然后还需要在notebook中导入这个扩展:

%load_ext memory_profiler

(1) 字符串切片方法对比

我们先建立一个长度为一千万的字符型Series对象:

点击添加图片描述(最多60个字)编辑

我们尝试使用两种方法,对Series对象中的所有字符对象取前两个元素:

点击添加图片描述(最多60个字)编辑

上面我们会发现第一种方法使用列表推导式配合字符串切片方法,会比第二种使用Pandas字符串方法占用内存要大且运算时间稍慢。

同时,Pandas字符串方法的代码简洁很多。

(5) 字符串替换方法对比

同理按照以上的方法,我们对比一下两种字符串方法的在字符串替换上的运算效率:

点击添加图片描述(最多60个字)编辑

上图可以看到,无论是代码简洁性、可阅读性,还是运算效率方面,Pandas的字符串方法都要好很多。

(6) 字符串拼接方法对比

多个字符型Series对象拼接在一起,同时使用分隔符“|”拼接,我们对比一下两种写法:

点击添加图片描述(最多60个字)编辑

可以看到在拼接方法上,虽然代码的简洁性与拓展性,Pandas的字符串方法要好很多,但是其运算效率要比第一种方法要低很多。

这主要是因为第一种方法使用了广播机制,加快了运算效率。

(7) 去除前后特殊字符

去除字符串前后的特殊字符,比如空格,是字符串处理的常见操作,我们看看使用Pandas的.str.strip()方法是否在各方面要好很多。

先建一个例子:

点击添加图片描述(最多60个字)编辑

第一种方法我们依然使用列表推导式与字符串内建函数:

点击添加图片描述(最多60个字)编辑

第二种方法:

点击添加图片描述(最多60个字)编辑

第二种方法我们会看到,虽然运算时间稍微比第一种方法高了一点,但是代码简洁性和可阅读性要比第一种方法好很多,而且运算内存消耗要低很多。

4. 小结

从上面这么多的例子我们会发现,Pandas的字符串方法无论是在代码可阅读性还是运算效率方面,在实现各种字符串处理场景时,基本上都要比其他方法要好很多。而在实现特定字符串处理场景,比如独热编码时,Pandas特有的字符串方法就更加便捷。

作为实用主义者,我们在处理文本数据的时候,可以优先使用Pandas字符串方法。遇到尤为棘手的处理需求时,结合字符串内建函数与Pandas的apply(),你就可以建立一个功能强大无比的字符串处理程序来清洗自己数据了。

相关推荐

python gui编程框架推荐以及介绍(python gui开发)

Python的GUI编程框架有很多,这里为您推荐几个常用且功能强大的框架:Tkinter:Tkinter是Python的标准GUI库,它是Python内置的模块,无需额外安装。它使用简单,功能较为基础...

python自动化框架学习-pyautogui(python接口自动化框架)

一、适用平台:PC(windows和mac均可用)二、下载安装:推荐使用命令行下载(因为会自动安装依赖库):pipinstallPyAutoGUI1该框架的依赖库还是蛮多的,第一次用的同学耐心等...

Python 失宠!Hugging Face 用 Rust 新写了一个 ML框架,现已低调开源

大数据文摘受权转载自AI前线整理|褚杏娟近期,HuggingFace低调开源了一个重磅ML框架:Candle。Candle一改机器学习惯用Python的做法,而是Rust编写,重...

Flask轻量级框架 web开发原来可以这么可爱呀~(建议收藏)

Flask轻量级框架web开发原来可以这么可爱呀大家好呀~今天让我们一起来学习一个超级可爱又实用的PythonWeb框架——Flask!作为一个轻量级的Web框架,Flask就像是一个小巧精致的工...

Python3使用diagrams生成架构图(python架构设计)

目录技术背景diagrams的安装基础逻辑关系图组件簇的定义总结概要参考链接技术背景对于一个架构师或者任何一个软件工程师而言,绘制架构图都是一个比较值得学习的技能。这就像我们学习的时候整理的一些Xmi...

几个高性能Python网络框架,高效实现网络应用

Python作为一种广泛使用的编程语言,其简洁易读的语法和强大的生态系统,使得它在Web开发领域占据重要位置。高性能的网络框架是构建高效网络应用的关键因素之一。本文将介绍几个高性能的Python网络框...

Web开发人员的十佳Python框架(python最好的web框架)

Python是一种面向对象、解释型计算机程序设计语言。除了语言本身的设计目的之外,Python的标准库也是值得大家称赞的,同时Python还自带服务器。其它方面,Python拥有足够多的免费数据函数库...

Diagram as Code:用python代码生成架构图

工作中常需要画系统架构图,通常的方法是通过visio、processon、draw.io之类的软件,但是今天介绍的这个软件Diagrams,可以通过写Python代码完成架构图绘制,确实很co...

分享一个2022年火遍全网的Python框架

作者:俊欣来源:关于数据分析与可视化最近Python圈子当中出来一个非常火爆的框架PyScript,该框架可以在浏览器中运行Python程序,只需要在HTML程序中添加一些Python代码即可实现。该...

10个用于Web开发的最好 Python 框架

Python是一门动态、面向对象语言。其最初就是作为一门面向对象语言设计的,并且在后期又加入了一些更高级的特性。除了语言本身的设计目的之外,Python标准库也是值得大家称赞的,Python甚至还...

使用 Python 将 Google 表格变成您自己的数据库

图片来自Shutterstock,获得FrankAndrade的许可您知道Google表格可以用作轻量级数据库吗?GoogleSheets是一个基于云的电子表格应用程序,可以像大多数数据库管...

牛掰!用Python处理Excel的14个常用操作总结!

自从学了Python后就逼迫用Python来处理Excel,所有操作用Python实现。目的是巩固Python,与增强数据处理能力。这也是我写这篇文章的初衷。废话不说了,直接进入正题。数据是网上找到的...

将python打包成exe的方式(将python文件打包成exe可运行文件)

客户端应用程序往往需要运行Python脚本,这对于那些不熟悉Python语言的用户来说可能会带来一定的困扰。幸运的是,Python拥有一些第三方模块,可以将这些脚本转换成可执行的.exe...

对比Excel学Python第1练:既有Excel,何用Python?

背景之前发的文章开头都是“Python数据分析……”,使得很多伙伴以为我是专门分享Python的,但我的本意并非如此,我的重点还是会放到“数据分析”上,毕竟,Python只是一种工具而已。现在网上可以...

高效办公:Python处理excel文件,摆脱无效办公

一、Python处理excel文件1.两个头文件importxlrdimportxlwt其中xlrd模块实现对excel文件内容读取,xlwt模块实现对excel文件的写入。2.读取exce...

取消回复欢迎 发表评论: