百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python每日一库之Numpy(python numpy.zeros)

off999 2024-10-04 18:49 45 浏览 0 评论

什么是Numpy?

Numpy 用于在数组中执行数学和逻辑运算。使用 NumPy 的主要目的是提高内存效率,它可以管理任何维度的大量数据。Numpy 用于执行数组和矩阵运算。

Numpy 可以执行矩阵运算、三角函数、线性代数、统计等等。

Numpy ndarray 提供多维数组对象。

Numpy中的数组有哪些类型?


标量 - 它只有单个元素0D

向量 - 它有 n 个元素,但是,元素应该是行或列(简单地总结元素列表)1D

矩阵 - 矩阵在2D行和列中保存值

Tensor-Tensor 有 n 维的行和列元素。

如何安装Numpy

使用 pip 安装 NumPy 包

pip install numpy

Pandas 和 Numpy 相辅相成,是两个最重要的 Python 库,如果你想了解Pandas,请查看我之前的Pandas文章:Python每日一库之Pandas

最重要的 Numpy 数据类型是什么?

  • 一维数组

最重要的对象之一是称为 ndarray 的 N 维数组类型。

我们可以将一维数组视为具有一个或多个元素的表的一列或一行:

存储在 ndarray 中的所有项目都必须是同一类型。这意味着 ndarray 是一个同质数据块。ndarray 有跨步信息。该数值是维度中下一个元素的字节数。

这有助于数组在内存中导航,并且不需要复制数据。

每个 ndarray 都包含一个指向其在计算机中的内存位置的指针。它还包含它的 dtype、它的形状和步幅元组。步幅是整数,表示它必须移动的字节数才能到达维度中的下一个元素。

数组包含相同类型的对象的集合,例如整数

要创建一个数组:

import numpy as np

a = np.array([1,2,3])
  • 多维数组

多维数组有不止一列。

我们可以将多维数组视为 Excel 电子表格——它具有列和行。每一列都可以被视为一个维度。

我们可以实例化一个数组对象:

numpy.array([,.,.,.,])
numpy.array([1,2]) #1D 
numpy.array([[1,2],[10,20]]) #2D#对于复杂类型
numpy.array([1,2], dtype=complex) #1D complex

如果要创建 3D 数组:

  • 这将创建 3 个具有 4 行和 5 列的数组,每个数组具有随机整数。
3DArray = np.random.randint(10, size=(3, 4, 5))

还有其他类型可用,例如:

  1. 布尔值
  2. 整数(有符号和无符号)
  3. 浮点数
  4. 复杂的

何时使用数组

就像数组数据结构一样,Python 中的列表也是一种数据结构,列表是可变的,并且是有序的元素序列。它很灵活,可以保存任意数据。此外,我们可以有效地将项目附加到列表中。但是,列表比数组占用更多空间,数组是 C语言数组的封装。如果要执行数学运算,则应使用 Numpy 数组。此外,我们可以在数组上执行我们无法在列表上执行的算术函数。

创建数组的不同方法

  • 如果要创建没有任何元素的数组
numpy.empty(2) #这将创建 2 个元素的一维数组
numpy.empty([2,3]) #这将创建二维数组(2 行,每列 3 列)
  • 如果要创建一个0s的数组
numpy.zeros(2) #它将创建一个有2个元素的一维数组,都是0 
#注意方法的参数是shape,它可以是int或tuple
  • 如果要创建一个1s的数组
numpy.ones(2) # 这将创建具有 2 个元素的一维数组,均为 1
  • 如果你想从一个元素序列创建一个numpy数组
numpy.asarray([python sequence]) #e.g. numpy.asarray([1,2])
  • 从内存中的缓冲区创建numpy数组
#可以在内存中复制字符串
x = np.fromstring(‘hi’, dtype=’int8')
#直接引用字符串的缓冲区,这样可以节省内存,可以传入dtype参数,默认是float
a = np.frombuffer(x, dtype=’int8')
  • 如果要创建一系列元素
array = np.arange(3) #array 将包含 0,1,2
  • 如果要创建一个具有均匀分布的值的数组
#numpy.arange(first, last, step, type)
numpy.arange(0,6,2) # 返回[0,2,4]
  • 如果要创建一个数组,其中值在一个区间之间呈线性间隔
#numpy.linspace(first, last, number)
numpy.linspace(0,10,5)  # 返回[0,2.5,5,7.5,10]
  • 如果要创建一个数组,其中值在一个间隔之间以对数间隔
#numpy.logspace(first, end, number)
a= numpy.logspace(1, 15, 4)
#[1.00000000e+01 4.64158883e+05 2.15443469e+10 1.00000000e+15]
  • 随机数生成
np.random.rand(3,2) #3行,2列

添加/删除/排序元素

  • 添加元素
a = [0] 
np.append(a, [1,2]) #adds 1,2 at the end 
# [0,1,2]
  • 删除元素
# np.delete(array, 1) 从数组中删除元素1
a = np.delete([0,1,2], 1) #results in [0,2]
  • 元素排序

对数组进行排序,请调用 sort(array, axis, kind, orderby) 函数

# np.sort(array1, axis=1, kind = 'quicksort')
a = np.sort([[0,3,2],[1,2,3]], axis=1, kind = 'quicksort' )
#[[0 2 3] 
# [1 2 3]]

NumPy 数组函数和属性

  • shape:查找数组的维度(列数/行数)
#array = np.array([[..],[..]]) 
#print(array.shape)

a = np.array([[1,2],[3,4]])
print(a.shape)
# (2,2) # 行、列

#可以通过设置 shape 属性来改变数组的形状(调整大小)
array.shape = (1,2) #1 行 2 列
#如果想在不复制任何数据的情况下更改数组的形状,可以使用reshape()方法
array = np.arange(10) 
array.reshape(2,5) #这将返回一个2行5列的数组
#还可以将维度值设置为 -1,这将让 Numpy 从数据中推断出维度
#想展平一个数组而不返回一个副本,我们可以使用 ravel() 函数
array.ravel() # 这会将上面的数组重塑为1d的10个元素
#我们想展平一个数组并生成一个副本,那么我们可以使用 flatten() 方法
a = array.flatten() #这将返回一个一维数组
  • 如果我们要求一个数组的维度
a = np.array([[1,2],[3,4]])
print(a.ndim)
  • 如果我们要求一个数组每个元素的长度
a = np.array([0,1,2]).itemsize
print(a)
  • 如果我们想要对数组的一个子集进行切片
array = np.arange(100)
#获取第三个元素:
array[2] #prints 2
#获取索引中的项目
array[3:5] #3 是开始,5 是结束, prints [3 4]
#获取3-10个元素,步长是4:
array[2:9:4] #prints [2 6]
#从第二个元素开始获取所有元素
array[1:] #prints [1-99]
#也可以传入N维索引
array = np.array([[0,1,3],[1,2,4]])
print(array[[0,1],[1,2]]) #prints [1 4]
  • 数组切片中的条件
#获取所有 NAN 元素
array[np.isnan(array)]

#where()可用于传入布尔表达式
np.where(array > 2) # 将返回所有符合条件的元素
  • 广播数组
#当对两个不同大小的数组执行数学运算时,较小的数组被广播到较大数组的大小
large_array = np.arange(15).reshape(5,3) #5 行 3 列数组
small_array = np.arange(5).reshape(5,1) #5 行 1 列数组
final_array = small_array * large_array 
print (final_array)

需要注意的关键是广播兼容两个数组,其中第一个数组的列数与第二个数组的行数相同,或者任何数组的长度为 1。

  • 连接数组
a = [1,2] 
b= [3,4] 
c = [a,b] 
#输出:[[1, 2], [3, 4]]

np.concatenate(c) 
#输出:[1 2 3 4]
np.stack(c) #
#输出:
#[[1 2] 
#[3 4]]
# 可以使用 vstack 或 hstach 方法将它们堆叠起来
np.hstack(c) #
#输出:
#[1 2 3 4]
np.vstack(c) #
#输出:
#[[1 2] 
#[3 4]]
  • 字符串操作

可以使用字符串的操作,比如添加,大写,小写,替换等。

add(), upper(), lower(), replace()
  • 创建 numpy 数组的深拷贝
new_array = np.copy(array)

要重复一个数组,我们可以使用 repeat() 或 tile() 函数。repeat(n) 将简单地重复每个元素 n 次。n 也可以是一个数组,其中每个元素将根据 n 的值以不同的方式重复,例如 [1,5] 意味着我们需要重复第一个元素一次,第二个元素重复 5 次。对于多维数组,我们可以传入axis属性。tile(array, (n,m)) 略有不同,因为除了重复元素之外,它还对 n 行和 m 列的项目进行平铺/堆叠。

  • 自定义数组函数

使用 np.fromnpfunc(my_new_ufunc, elements) 创建新的 func,然后在 NumPy 数组上执行它

  • 结构化数组

我们想创建一个包含多种数据类型元素的数组,那么我们可以创建一个结构化数组。我们可以设置 dtype,它是一个包含元素名称和类型的元组列表。结构化数组比 pandas DataFrame 更快,因为它们消耗更少的内存,因为每个元素都表示为固定数量的字节,它们是精简的,因此是高效的低级数组,也可以被视为表格结构。

type = [('column_1', np.int32, 'column_2', np.float64]) 
array = np.array([1,2], [2.4, -1], dtype=type)
  • 数学函数

Numpy 提供了一系列强大的数学函数,由于 Numpy 具有丰富的数学特性,因此在 Numpy 之上构建了许多库

#加、减、乘、除、幂、模
#要对两个数组 a 和 b 执行基本算术函数:

a = [1,2] 
b= [3,4] 
c = np.add(a, b) 
c = np.subtract(a, b) 
c = np.multiply(a, b) 
c = np.divide( a, b) 
c = np.power(a, b) 
c = np.power(a, 2) 
#得到余数
c= np.mod(a, b) 
c = np.remainder(a, b)

#四舍五入,ceiling向上取整,floor向下取整
#要更改数组所有元素的精度:

np.around(array, 4) # 4dp 
np.ceil(array) #1.8 会变成 2 
np.floor(array) #1.8 会变成 1
  • 三角函数
array = [0, 1] 
np.sin(array) 
np.cos(array) 
np.tan(array) 
np.arcsin(array) 
np.arccos(array) 
np.arctan(array)
  • 统计
a = [1,2]
np.amin(a, 0) #min in the axis
np.amax(a, 0) #max in the axis
np.percentile(a, 10)
np.median(a)
np.std(a)
np.average(a)
np.mean(a)
np.var(a)
  • 代数

Numpy 包含一个称为 linalg 的模块。它具有许多代数函数

1. dot() #两个数组的点积
2. inner() #两个数组的内积
3. 行列式() #一个数组的行列式
4.solve() #求解矩阵方程
5. inv() #逆矩阵
6. matmul() #两个数组的矩阵乘积

关于 Numba 的注意事项

我们可以使用 Numba 为 Numpy 创建快速函数。Numba 函数本质上是纯 Python 函数。诀窍是使用 nb.jit(func) 将函数编译成更快的 Numba 版本。我们还可以在函数上使用 @numba.vectorize 装饰器将代码编译成 NumPy ufunc。尽管 Numba 不支持所有 Python 代码,但它可以处理大部分用纯 Python 编写的数值算法。

概括

本文概述了 NumPy 库的核心功能。自从 2005 年 NumPy 与 Numarray 的功能相结合以来,它已经获得了巨大的普及,并被认为是使用的关键 Python 库之一。

文章概述了 NumPy 数组的关键功能和属性,感谢阅读,Happy Code!

相关推荐

安全教育登录入口平台(安全教育登录入口平台官网)

122交通安全教育怎么登录:122交通网的注册方法是首先登录网址http://www.122.cn/,接着打开网页后,点击右上角的“个人登录”;其次进入邮箱注册,然后进入到注册页面,输入相关信息即可完...

大鱼吃小鱼经典版(大鱼吃小鱼经典版(经典版)官方版)

大鱼吃小鱼小鱼吃虾是于谦跟郭麒麟的《我的棒儿呢?》郭德纲说于思洋郭麒麟作诗的相声,最后郭麒麟做了一首,师傅躺在师母身上大鱼吃小鱼小鱼吃虾虾吃水水落石出师傅压师娘师娘压床床压地地动山摇。...

谷歌地球下载高清卫星地图(谷歌地球地图下载器)
  • 谷歌地球下载高清卫星地图(谷歌地球地图下载器)
  • 谷歌地球下载高清卫星地图(谷歌地球地图下载器)
  • 谷歌地球下载高清卫星地图(谷歌地球地图下载器)
  • 谷歌地球下载高清卫星地图(谷歌地球地图下载器)
哪个软件可以免费pdf转ppt(免费的pdf转ppt软件哪个好)
哪个软件可以免费pdf转ppt(免费的pdf转ppt软件哪个好)

要想将ppt免费转换为pdf的话,我们建议大家可以下一个那个wps,如果你是会员的话,可以注册为会员,这样的话,在wps里面的话,就可以免费将ppt呢转换为pdfpdf之后呢,我们就可以直接使用,不需要去直接不需要去另外保存,为什么格式转...

2026-02-04 09:03 off999

电信宽带测速官网入口(电信宽带测速官网入口app)

这个网站看看http://www.swok.cn/pcindex.jsp1.登录中国电信网上营业厅,宽带光纤,贴心服务,宽带测速2.下载第三方软件,如360等。进行在线测速进行宽带测速时,尽...

植物大战僵尸95版手机下载(植物大战僵尸95 版下载)

1可以在应用商店或者游戏平台上下载植物大战僵尸95版手机游戏。2下载教程:打开应用商店或者游戏平台,搜索“植物大战僵尸95版”,找到游戏后点击下载按钮,等待下载完成即可安装并开始游戏。3注意:确...

免费下载ppt成品的网站(ppt成品免费下载的网站有哪些)

1、Chuangkit(chuangkit.com)直达地址:chuangkit.com2、Woodo幻灯片(woodo.cn)直达链接:woodo.cn3、OfficePlus(officeplu...

2025世界杯赛程表(2025世界杯在哪个国家)

2022年卡塔尔世界杯赛程公布,全部比赛在卡塔尔境内8座球场举行,2022年,决赛阶段球队全部确定。揭幕战于当地时间11月20日19时进行,由东道主卡塔尔对阵厄瓜多尔,决赛于当地时间12月18日...

下载搜狐视频电视剧(搜狐电视剧下载安装)

搜狐视频APP下载好的视频想要导出到手机相册里方法如下1、打开手机搜狐视频软件,进入搜狐视频后我们点击右上角的“查找”,找到自已喜欢的视频。2、在“浏览器页面搜索”窗口中,输入要下载的视频的名称,然后...

pubg免费下载入口(pubg下载入口官方正版)
  • pubg免费下载入口(pubg下载入口官方正版)
  • pubg免费下载入口(pubg下载入口官方正版)
  • pubg免费下载入口(pubg下载入口官方正版)
  • pubg免费下载入口(pubg下载入口官方正版)
永久免费听歌网站(丫丫音乐网)

可以到《我爱音乐网》《好听音乐网》《一听音乐网》《YYMP3音乐网》还可以到《九天音乐网》永久免费听歌软件有酷狗音乐和天猫精灵,以前要跳舞经常要下载舞曲,我从QQ上找不到舞曲下载就从酷狗音乐上找,大多...

音乐格式转换mp3软件(音乐格式转换器免费版)

有两种方法:方法一在手机上操作:1、进入手机中的文件管理。2、在其中选择“音乐”,将显示出手机中的全部音乐。3、点击“全选”,选中所有音乐文件。4、点击屏幕右下方的省略号图标,在弹出菜单中选择“...

电子书txt下载(免费的最全的小说阅读器)

1.Z-library里面收录了近千万本电子书籍,需求量大。2.苦瓜书盘没有广告,不需要账号注册,使用起来非常简单,直接搜索预览下载即可。3.鸠摩搜书整体风格简洁清晰,书籍资源丰富。4.亚马逊图书书籍...

最好免费观看高清电影(播放免费的最好看的电影)

在目前的网上选择中,IMDb(互联网电影数据库)被认为是最全的电影网站之一。这个网站提供了各种类型的电影和电视节目的海量信息,包括剧情介绍、演员表、评价、评论等。其还提供了有关电影制作背后的详细信息,...

孤单枪手2简体中文版(孤单枪手2简体中文版官方下载)

要将《孤胆枪手2》游戏的征兵秘籍切换为中文,您可以按照以下步骤进行操作:首先,打开游戏设置选项,通常可以在游戏主菜单或游戏内部找到。然后,寻找语言选项或界面选项,点击进入。在语言选项中,选择中文作为游...

取消回复欢迎 发表评论: