Python读写EXCEL文件常用方法大全
off999 2024-10-07 12:08 30 浏览 0 评论
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理
前言
python读写excel的方式有很多,不同的模块在读写的讲法上稍有区别,这里我主要介绍几个常用的方式。
- 用xlrd和xlwt进行excel读写;
- 用openpyxl进行excel读写;
- 用pandas进行excel读写;
参考:
https://www.python-excel.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html#pandas.read_excel
https://www.jianshu.com/p/19219542bf23
数据准备
为了方便演示,我这里新建了一个data.xls和data.xlsx文件,第一个工作表sheet1区域“A1:E5”的内容如下,用于测试读写excel的代码:
xlrd和xlwt
xlrd是一个库,用于从Excel文件中以.xls格式读取数据和格式化信息
xlwt是一个库,用于将数据和格式化信息写入较旧的Excel文件(例如:.xls)。
示例
pip install xlrd
pip install xlwt我们开始来读取文件的内容
import xlrd
import os
file_path = os.path.dirname(os.path.abspath(__file__))
base_path = os.path.join(file_path, 'data.xlsx')
book = xlrd.open_workbook(base_path)
sheet1 = book.sheets()[0]
nrows = sheet1.nrows
print('表格总行数', nrows)
ncols = sheet1.ncols
print('表格总列数', ncols)
row3_values = sheet1.row_values(2)
print('第3行值', row3_values)
col3_values = sheet1.col_values(2)
print('第3列值', col3_values)
cell_3_3 = sheet1.cell(2, 2).value
print('第3行第3列的单元格的值:', cell_3_3)接下来我们来进行写入,写入可以进行的操作太多了,我这里只列举了常用的的操作。
import datetime
# 创建一个workbook 设置编码
workbook = xlwt.Workbook(encoding='utf-8')
# 创建一个worksheet
worksheet = workbook.add_sheet('Worksheet')
# 写入excel参数对应 行, 列, 值
worksheet.write(0, 0, label='测试')
# 设置单元格宽度
worksheet.col(0).width = 3333
# 设置单元格高度
tall_style = xlwt.easyxf('font:height 520;')
worksheet.row(0).set_style(tall_style)
# 设置对齐方式
alignment = xlwt.Alignment() # Create Alignment
# May be: HORZ_GENERAL, HORZ_LEFT, HORZ_CENTER, HORZ_RIGHT, HORZ_FILLED, HORZ_JUSTIFIED, HORZ_CENTER_ACROSS_SEL, HORZ_DISTRIBUTED
alignment.horz = xlwt.Alignment.HORZ_CENTER
# May be: VERT_TOP, VERT_CENTER, VERT_BOTTOM, VERT_JUSTIFIED, VERT_DISTRIBUTED
alignment.vert = xlwt.Alignment.VERT_CENTER
style = xlwt.XFStyle() # Create Style
style.alignment = alignment # Add Alignment to Style
worksheet.write(2, 0, '居中', style)
# 写入带颜色背景的数据
pattern = xlwt.Pattern() # Create the Pattern
# May be: NO_PATTERN, SOLID_PATTERN, or 0x00 through 0x12
pattern.pattern = xlwt.Pattern.SOLID_PATTERN
pattern.pattern_fore_colour = 5 # May be: 8 through 63. 0 = Black, 1 = White, 2 = Red, 3 = Green, 4 = Blue, 5 = Yellow, 6 = Magenta, 7 = Cyan, 16 = Maroon, 17 = Dark Green, 18 = Dark Blue, 19 = Dark Yellow , almost brown), 20 = Dark Magenta, 21 = Teal, 22 = Light Gray, 23 = Dark Gray, the list goes on...
style = xlwt.XFStyle() # Create the Pattern
style.pattern = pattern # Add Pattern to Style
worksheet.write(0, 1, '颜色', style)
# 写入日期
style = xlwt.XFStyle()
# Other options: D-MMM-YY, D-MMM, MMM-YY, h:mm, h:mm:ss, h:mm, h:mm:ss, M/D/YY h:mm, mm:ss, [h]:mm:ss, mm:ss.0
style.num_format_str = 'M/D/YY'
worksheet.write(0, 2, datetime.datetime.now(), style)
# 写入公式
worksheet.write(0, 3, 5) # Outputs 5
worksheet.write(0, 4, 2) # Outputs 2
# Should output "10" (A1[5] * A2[2])
worksheet.write(1, 3, xlwt.Formula('D1*E1'))
# Should output "7" (A1[5] + A2[2])
worksheet.write(1, 4, xlwt.Formula('SUM(D1,E1)'))
# 写入超链接
worksheet.write(1, 0, xlwt.Formula('HYPERLINK("http://www.baidu.com";"百度一下")'))
# 保存
workbook.save('Excel_test.xls')需要注意的是最好在当前路径下通过命令行执行,否则无法生成文件。
openpyxl
openpyxl是一个Python库,用于读取/写入Excel 2010 xlsx/xlsm/xltx/xltm文件。
安装包
pip install openpyx安装完成可以开始进行读取数据
import openpyxl
import os
file_path = os.path.dirname(os.path.abspath(__file__))
base_path = os.path.join(file_path, 'data.xlsx')
workbook = openpyxl.load_workbook(base_path)
worksheet = workbook.get_sheet_by_name('Sheet1')
row3=[item.value for item in list(worksheet.rows)[2]]
print('第3行值',row3)
col3=[item.value for item in list(worksheet.columns)[2]]
print('第3行值',col3)
cell_2_3=worksheet.cell(row=2,column=3).value
print('第2行第3列值',cell_2_3)
max_row=worksheet.max_row
print('最大行',max_row)现在我们来开始写入数据
import openpyxl
import datetime
from openpyxl.styles import Font, colors, Alignment
#实例化
workbook = openpyxl.Workbook()
# 激活 worksheet
sheet=workbook.active
#写入数据
sheet['A1']='python'
sheet['B1']='javascript'
#写入时间
sheet['A2'] = datetime.datetime.now().strftime("%Y-%m-%d")
# 第2行行高
sheet.row_dimensions[2].height = 40
# B列列宽
sheet.column_dimensions['B'].width = 30
# 设置A1中的数据垂直居中和水平居中
sheet['A1'].alignment = Alignment(horizontal='center', vertical='center')
# 下面的代码指定了等线24号,加粗斜体,字体颜色黄色。直接使用cell的font属性,将Font对象赋值给它。
bold_itatic_24_font = Font(name='等线', size=24, italic=True, color='00FFBB00', bold=True)
sheet['B1'].font = bold_itatic_24_font
# 合并单元格, 往左上角写入数据即可
sheet.merge_cells('A2:B2') # 合并一行中的几个单元格
# 拆分单元格
# sheet.unmerge_cells('A2:B2')
#保存
workbook.save('new.xlsx')pandas
pandas支持xls, xlsx, xlsm, xlsb, odf, ods和odt文件扩展名从本地文件系统或URL读取。支持读取单个工作表或工作表列表的选项。
首先依然是安装包
pip install pandas语法:
pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False,dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, **kwds)
- io,Excel的存储路径
- sheet_name,要读取的工作表名称
- header, 用哪一行作列名
- names, 自定义最终的列名
- index_col, 用作索引的列
- usecols,需要读取哪些列
- squeeze,当数据仅包含一列
- converters ,强制规定列数据类型
- skiprows,跳过特定行
- nrows ,需要读取的行数
- skipfooter , 跳过末尾n行
import pandas as pd
import os
file_path = os.path.dirname(os.path.abspath(__file__))
base_path = os.path.join(file_path, 'data.xlsx')
df = pd.read_excel(base_path)
print(df)写入数据
语法:
DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)
参数说明:
- excel_writer:文件路径或现有的ExcelWriter
- sheet_name:将包含数据文件的工作表的名称
- na_rep:缺失的数据表示
- float_format:格式化浮点数的字符串。例如float_format = " %。2f"格式为0.1234到0.12。
- columns:列
- header:写出列名。如果给定一个字符串列表,则假定它是列名的别名。
- index:写入行名称(索引)
- index_label:如果需要,索引列的列标签。如果未指定,并且标头和索引为真,则使用索引名。如果DataFrame使用多索引,应该给出一个序列。
- startrow:左上角的单元格行转储数据帧。
- startcol:左上角单元格列转储数据帧。
- engine:编写要使用的引擎“ openpyxl”或“ xlsxwriter”。 您还可以通过选项io.excel.xlsx.writer,io.excel.xls.writer和io.excel.xlsm.writer进行设置。
- merge_cells:将多索引和层次结构行写入合并单元格。
- encoding:对生成的excel文件进行编码。仅对xlwt有必要,其他编写器本身支持unicode。
- inf_rep:表示无穷大。
- verbose:在错误日志中显示更多信息。
- freeze_panes:指定要冻结的最底部的行和最右边的列
from pandas import DataFrame
data = {'name': ['张三', '李四', '王五'],'age': [11, 12, 13],'sex': ['男', '女', '男']}
df = DataFrame(data)
df.to_excel('file.xlsx')私信小编01即可获取大量Python学习资料
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
