pydotplus的安装、基本入门和决策树的可视化
off999 2024-10-10 07:49 41 浏览 0 评论
1 说明
=====
1.1 pydotplus是旧pydot项目的一个改进版本,它为graphviz的点语言提供了一个python接口。
1.2 复习一下:
1.2.1 pydot已经淘汰了,不再更新了。
1.2.2 Dot是开源工具包Graphviz上用来画图的一门脚本语言,本次不介绍了。
1.3 提到基本绘制图形,dot语法类似,泰坦尼克号决策树的可视化;讲解清楚,注释仔细,通俗易懂,适合收藏。
2 介绍
=====
2.1 官网:
https://pydotplus.readthedocs.io/
https://github.com/carlos-jenkins/pydotplus2.2 安装:
pip install pydotplus
#本机安装
sudo pip3.8 install pydotplus2.3 有时候可能需要安装graphviz:
pip install graphviz #注意环境变量设置3 效果展示
========
3.1 入门级图1
3.2 图1代码:
import pydotplus as pdp
#方法一,单引号
#graph = pdp.graph_from_dot_data('digraph demo1{a -> b -> c; c ->a; }')
#方法二,双引号
graph = pdp.graph_from_dot_data(
'''
digraph demo1{
a -> b -> c; c ->a; }
'''
)
#生成jpg图片
#graph.write_jpg('/home/xgj/Desktop/pydotplus/3dot.jpg')
#生成png图片
graph.write_png('/home/xgj/Desktop/pydotplus/3dot.png')
#生成pdf文件
#graph.write_pdf('/home/xgj/Desktop/pydotplus/3dot.pdf')3.3 图2
3.4 图2代码
import pydotplus as pdp
#语法符合原dot语法
dot = '''
//定义节点属性
digraph g {
//==========定义节点关系============
a->b;
b->c;
c->a;
c->d->e->f;
d->g;
e->h;
//==========定义节点属性============
//定义a节点为长方形, 样式为填充, 填充颜色为#ABACBA
a[shape=box,label="Server1\nWebServer",fillcolor="#ABACBA",style=filled];
//定义b为5边形, 标签为"bb", 样式为填充, 填充色为red
b[shape=polygon,sides=5,label="bb",style=filled,fillcolor=red];
//c, 默认为椭圆
d[shape=circle,label="加油",fontname="Microsoft YaHei"]; //圆
e[shape=triangle]; //三角形
f[shape=polygon, sides=4, skew=0.5]; //平行四边形
g[shape=polygon, distortion=0.5]; //梯形, 上边长
h[shape=polygon, distortion=-.5]; //梯形, 下边长
}
'''
graph = pdp.graph_from_dot_data(dot)
graph.write_jpg('/home/xgj/Desktop/pydotplus/4dot.jpg')3.5 图3
3.6 图3代码:
import pydotplus as pdp
dot_cn = """
digraph demo{
node [shape=box, style="rounded", color="black", fontname="Microsoft YaHei"];
edge [fontname="Microsoft YaHei"];
a -> b[label="哈尼"]
a[label="你好么?"]
b[label="我很好!"]
}
"""
graph = pdp.graph_from_dot_data(dot_cn)
graph.write_jpg('/home/xgj/Desktop/pydotplus/5dot.jpg')4 泰坦尼克号的决策树
=================
4.1 效果图
4.2 注意
======
4.2.1 决策树是机器学习中一个比较重要而且常用的算法, 是基于香农的信息论计算信息熵然后计算信息增益。
4.2.2 参考文章:
#https://blog.csdn.net/qq_42768234/article/details/99453826?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.add_param_isCf&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.add_param_isCf4.2.3 数据集:打开网页,复制,并修改txt为csv
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt4.3 代码:
import numpy as np
import pandas as pd
file_path = "/home/xgj/Desktop/pydotplus/titanic.csv"
data = pd.read_csv(file_path)
data["age"].isnull().sum() # 年龄有680个缺失值
x = data[["pclass", "age", "sex"]]
y = data["survived"]
x["age"].fillna(x["age"].mean(), inplace=True) # 用平均年龄来填充缺失值
from sklearn.model_selection import train_test_split # 导入数据集分割
from sklearn.feature_extraction import DictVectorizer # 导入特征工程
from sklearn.tree import DecisionTreeClassifier # 导入决策树分类器
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) # 分割数据
info = DictVectorizer(sparse=False) # 特征工程
x_train = info.fit_transform(x_train.to_dict(orient="records"))
x_test = info.fit_transform(x_test.to_dict(orient="records"))
dec = DecisionTreeClassifier(max_depth=5)
dec.fit(x_train, y_train)
dec.score(x_test, y_test)
dec.predict(x_test[0: 1]) # 进行测试预测
from sklearn import tree
import pydotplus # 可视化
dot_data = tree.export_graphviz(dec, out_file=None,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.get_nodes()[7].set_fillcolor("#FFF2DD")
graph.write_png("/home/xgj/Desktop/pydotplus/graph7.png")
5 加载sklearn自身数据集
===================
5.1 效果图
5.2 参考文章
#https://blog.csdn.net/qq_39290225/article/details/99684091?utm_medium=distribute.pc_relevant.none-task-blog-OPENSEARCH-4.add_param_isCf&depth_1-utm_source=distribute.pc_relevant.none-task-blog-OPENSEARCH-4.add_param_isCf5.3 代码
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
wine=load_wine()#集合自身的数据集
Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)
#训练
clf=tree.DecisionTreeClassifier(criterion='entropy')
clf=clf.fit(Xtrain,Ytrain)
#查看一下准确度
score=clf.score(Xtest,Ytest)
f_name=['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','稀释葡萄酒','脯氨酸']
dot_data=tree.export_graphviz(clf
,feature_names=f_name
,class_names=['茅台','啤酒','黄酒']
,filled=True
,rounded=True,
out_file=None
)
import pydotplus # 可视化
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_png("/home/xgj/Desktop/pydotplus/graph8.png")
6 加载自身数据集、生成dot文件和决策树
===============================
6.1 图
6.2 代码:
#参考文章
#https://www.jianshu.com/p/59b510bafb4d
from sklearn import tree
from sklearn.datasets import load_iris
#导入数据集
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
#生成dot文件
with open("/home/xgj/Desktop/pydotplus/iris.dot", 'w') as f:
f = tree.export_graphviz(clf, out_file=f)
#决策树pydotplus可视化
import pydotplus
dot_data = tree.export_graphviz(clf, out_file=None)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_png("/home/xgj/Desktop/pydotplus/iris.png") 7 彩蛋
=====
7.1 dot文件可视化两种方法:
7.2 方法一:终端执行dot语法,dot文件在根目录下
dot -Tpng -o world.png world.dot7.3 方法二:python代码sklearn,并熟悉xy向量
7.3.1 图
7.3.2 代码
#用决策树建模
import sklearn.tree as tree
from sklearn.tree import DecisionTreeRegressor
import numpy as np
clf=tree.DecisionTreeRegressor(min_samples_split=50,max_leaf_nodes=15)
'''
DecisionTreeClassifier 能够实现多类别的分类。输入两个向量
向量X,大小为[n_samples,n_features],用于记录训练样本;
向量Y,大小为[n_samples],用于存储训练样本的类标签。
'''
#产生随机数据集和xy向量
rng = np.random.RandomState(1)
x = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(x).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))
#熟悉fit
clf_fit=clf.fit(x,y)
#打开dot文件
tree.export_graphviz(clf_fit,out_file="/home/xgj/Desktop/yhsj/world.dot" )
import pydotplus
dot_data = tree.export_graphviz(clf_fit, out_file=None, filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_jpg('/home/xgj/Desktop/yhsj/dot.jpg')小结
基本从简单到复制,难点在clf.fit(x,y)。
相关推荐
- app下载官网(欧歌影视app下载官网)
-
需要先进入佳能官网的下载页面,选择手机APP下载选项,根据手机操作系统的不同选择相应的下载链接即可成功下载佳能手机APP。下载链接通常会在网站的首页或者是产品页面上提供。总的来说,下载佳能手机APP非...
- 互盾手机数据恢复软件下载(互盾数据恢复软件可以免费使用一次吗)
-
要的。手机如果可以连电脑当做u盘识别就可以用恢复软件。比如用安易。至于能不能出现盘符,可以网上查一下你这个手机型号可不可以,或者问问手机售后。1、安装互盾安卓恢复大师,运行软件后,将手机连接到电脑上...
- 电脑wifi突然变成红叉搜不到
-
1、WiFi功能未开启:很多时候出现WiFi红色叉叉图标,可能就是无线WiFi的开关或者按键没有开启导致的。一般的笔记本键盘上面都有一个F5开启WiFi的功能,有的需要结合Fn功能键一起按。每个品牌的...
- 正版win10系统一键重装官网(一键装机win10正版系统)
-
1、下载小白一键重装软件,打开软件后选择我们要安装的系统。?2、接着小白给出我们一些常用的电脑软件,大家可根据自己需要进行下载。?3、然后就是我们就耐心的等待系统镜像的下载吧。?4、部署环境完成后我们...
- windows8系统自己怎么装(如何安装windows 8)
-
要在线安装Windows8系统,您可以按照以下步骤操作:1.准备安装媒体:在您的计算机上打开一个现代的网络浏览器(如Chrome、Firefox或Edge),然后前往Microsoft...
- win10登录选项没有密码设置(win10没有登陆密码框)
-
是该电脑没设置密码,所以登录时看不到密码选项。电脑开机后,要设置密码,设置完成后,重新启动电脑,就会出现密码登录框,输入密码并正确后,电脑才能正常进入系统。1、首先进入安全模式;进入安全模式教程:2、...
- 小白刷机官网(小白刷机助手)
-
平板的话,和处理器有关,如果处理器只支持win8是不能刷win10的。
- windows关闭端口命令(windows 关端口)
-
1、点击控制面板。2、进入控制面板,然后点击系统和安全。3、进入系统和安全,点击Windows防火墙。4、进入Windows防火墙,点击左侧的高级设置。5、进入防火墙高级设置,点击入站规则。6、点击入...
- 无线wifi路由器怎么安装(请问无线路由器怎么安装)
-
安装的方法/步骤:1、怎么安装无线路由器呢?首先把网线的其中一头插入进光猫里面。2、接着用网线的另一头插入进无线路由器的蓝色接口处,这样就安装好无线路由器啦。3、点击打开电脑浏览器,输入路由器设置地址...
- fat32格式化精灵(格式化fat32格式工具)
-
内存卡格式化一般有两种方式:第一种是直接将内存卡插入手机的卡托,然后进入设置——运行及内存管理,点击格式化SD卡即可完成。当然有一些手机是不支持外置的内存卡插入,这就需要用OTG线插入手机,点击手机的...
- 外置光驱安装win7系统(外置光驱安装操作系统)
-
苹果电脑、电源适配器丶光盘装系统(电脑有光驱、或者外接光驱)光盘安装准备:win764位纯净版安装盘,如果使用的苹果电脑有光驱,优先使用自带光驱安装;如电脑没有光驱,可以是用外接USB光驱安装。光盘...
- win7x86是32位还是64位
-
32位win7x86是32位操作系统,win7x64是64位操作系统。扩展资料Windows7,中文名称视窗7,是由微软公司(Microsoft)开发的操作系统,内核版本号为WindowsNT...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
系统u盘安装(win11系统u盘安装)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
