Python学习教程:决策树算法(三)sklearn决策树实战
off999 2024-10-10 07:50 19 浏览 0 评论
前面有跟大家出过两期关于决策树算法的Python学习教程,伙伴们学了学了,今天来点实际的吧,实践一把!做个巩固!
Python有一个著名的机器学习框架,叫sklearn。我们可以用sklearn来运行前面说到的赖床的例子。不过在这之前,我们需要介绍一下sklearn中训练一颗决策树的具体参数。
另外sklearn中训练决策树的默认算法是CART,使用CART决策树的好处是可以用它来进行回归和分类处理,不过这里我们只进行分类处理。
一. sklearn决策树参数详解
我们都知道,一个模型中很重要的一步是调参。在sklearn中,模型的参数是通过方法参数来决定的,以下给出sklearn中,决策树的参数:
DecisionTreeClassifier(criterion="gini",
splitter="best",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
class_weight=None,
presort=False)
参数含义:
1.criterion:string, optional (default="gini")
(1).criterion='gini',分裂节点时评价准则是Gini指数。
(2).criterion='entropy',分裂节点时的评价指标是信息增益。
2.max_depth:int or None, optional (default=None)。指定树的最大深度。
如果为None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点
中所有的样本点都属于同一个类别。或者每个叶子节点包含的样本数小于min_samples_split。
3.splitter:string, optional (default="best")。指定分裂节点时的策略。
(1).splitter='best',表示选择最优的分裂策略。
(2).splitter='random',表示选择最好的随机切分策略。
4.min_samples_split:int, float, optional (default=2)。表示分裂一个内部节点需要的做少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每次分裂最少样本数为ceil(min_samples_split * n_samples)
5.min_samples_leaf: int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每个叶子节点最少样本数为ceil(min_samples_leaf * n_samples)
6.min_weight_fraction_leaf:float, optional (default=0.)
指定叶子节点中样本的最小权重。
7.max_features:int, float, string or None, optional (default=None).
搜寻最佳划分的时候考虑的特征数量。
(1).如果为整数,每次分裂只考虑max_features个特征。
(2).如果为浮点数(0到1之间),每次切分只考虑int(max_features * n_features)个特征。
(3).如果为'auto'或者'sqrt',则每次切分只考虑sqrt(n_features)个特征
(4).如果为'log2',则每次切分只考虑log2(n_features)个特征。
(5).如果为None,则每次切分考虑n_features个特征。
(6).如果已经考虑了max_features个特征,但还是没有找到一个有效的切分,那么还会继续寻找
下一个特征,直到找到一个有效的切分为止。
8.random_state:int, RandomState instance or None, optional (default=None)
(1).如果为整数,则它指定了随机数生成器的种子。
(2).如果为RandomState实例,则指定了随机数生成器。
(3).如果为None,则使用默认的随机数生成器。
9.max_leaf_nodes: int or None, optional (default=None)。指定了叶子节点的最大数量。
(1).如果为None,叶子节点数量不限。
(2).如果为整数,则max_depth被忽略。
10.min_impurity_decrease:float, optional (default=0.)
如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
加权不纯度的减少量计算公式为:
min_impurity_decrease=N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
其中N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数,
N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指
分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。
11.min_impurity_split:float
树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。
12.class_weight:dict, list of dicts, "balanced" or None, default=None
类别权重的形式为{class_label: weight}
(1).如果没有给出每个类别的权重,则每个类别的权重都为1。
(2).如果class_weight='balanced',则分类的权重与样本中每个类别出现的频率成反比。
计算公式为:n_samples / (n_classes * np.bincount(y))
(3).如果sample_weight提供了样本权重(由fit方法提供),则这些权重都会乘以sample_weight。
13.presort:bool, optional (default=False)
指定是否需要提前排序数据从而加速训练中寻找最优切分的过程。设置为True时,对于大数据集
会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。
虽然看起来参数众多,但通常参数都会有默认值,我们只需要调整其中较为重要的几个参数就行。
通常来说,较为重要的参数有:
- criterion:用以设置用信息熵还是基尼系数计算。
- splitter:指定分支模式
- max_depth:最大深度,防止过拟合
- min_samples_leaf:限定每个节点分枝后子节点至少有多少个数据,否则就不分枝
二. sklearn决策树实战
2.1 准备数据及读取
数据就是上次说到的赖床特征,
季节时间已过 8 点风力情况要不要赖床springnobreezeyeswinternono windyesautumnyesbreezeyeswinternono windyessummernobreezeyeswinteryesbreezeyeswinternogaleyeswinternono windyesspringyesno windnosummeryesgalenosummernogalenoautumnyesbreezeno
将它存储成 csv 文件
spring,no,breeze,yes winter,no,no wind,yes autumn,yes,breeze,yes winter,no,no wind,yes summer,no,breeze,yes winter,yes,breeze,yes winter,no,gale,yes winter,no,no wind,yes spring,yes,no wind,no summer,yes,gale,no summer,no,gale,no autumn,yes,breeze,no
2.2 决策树的特征向量化DictVectorizer
sklearn的DictVectorizer能对字典进行向量化。什么叫向量化呢?比如说你有季节这个属性有[春,夏,秋,冬]四个可选值,那么如果是春季,就可以用[1,0,0,0]表示,夏季就可以用[0,1,0,0]表示。不过在调用DictVectorizer它会将这些属性打乱,不会按照我们的思路来运行,但我们也可以一个方法查看,我们看看代码就明白了。
import pandas as pd from sklearn.feature_extraction import DictVectorizer from sklearn import tree from sklearn.model_selection import train_test_split #pandas 读取 csv 文件,header = None 表示不将首行作为列 data = pd.read_csv('data/laic.csv',header =None) #指定列 data.columns = ['season','after 8','wind','lay bed'] #sparse=False意思是不产生稀疏矩阵 vec=DictVectorizer(sparse=False) #先用 pandas 对每行生成字典,然后进行向量化 feature = data[['season','after 8','wind']] X_train = vec.fit_transform(feature.to_dict(orient='record')) #打印各个变量 print('show feature\n',feature) print('show vector\n',X_train) print('show vector name\n',vec.get_feature_names())
我们来看看打印的结果:
show feature season after 8 wind 0 spring no breeze 1 winter no no wind 2 autumn yes breeze 3 winter no no wind 4 summer no breeze 5 winter yes breeze 6 winter no gale 7 winter no no wind 8 spring yes no wind 9 summer yes gale 10 summer no gale 11 autumn yes breeze show vector [[1. 0. 0. 1. 0. 0. 1. 0. 0.] [1. 0. 0. 0. 0. 1. 0. 0. 1.] [0. 1. 1. 0. 0. 0. 1. 0. 0.] [1. 0. 0. 0. 0. 1. 0. 0. 1.] [1. 0. 0. 0. 1. 0. 1. 0. 0.] [0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 0. 0. 0. 0. 1. 0. 1. 0.] [1. 0. 0. 0. 0. 1. 0. 0. 1.] [0. 1. 0. 1. 0. 0. 0. 0. 1.] [0. 1. 0. 0. 1. 0. 0. 1. 0.] [1. 0. 0. 0. 1. 0. 0. 1. 0.] [0. 1. 1. 0. 0. 0. 1. 0. 0.]] show vector name ['after 8=no', 'after 8=yes', 'season=autumn', 'season=spring', 'season=summer', 'season=winter', 'wind=breeze', 'wind=gale', 'wind=no wind']
通过DictVectorizer,我们就能够把字符型的数据,转化成0 1的矩阵,方便后面进行运算。额外说一句,这种转换方式其实就是one-hot编码。
2.4 决策树训练
可以发现在向量化的时候,属性都被打乱了,但我们也可以通过get_feature_names()这个方法查看对应的属性值。有了数据后,就可以来训练一颗决策树了,用sklearn很方便,只需要很少的代码
#划分成训练集,交叉集,验证集,不过这里我们数据量不够大,没必要 #train_x, test_x, train_y, test_y = train_test_split(X_train, Y_train, test_size = 0.3) #训练决策树 clf = tree.DecisionTreeClassifier(criterion='gini') clf.fit(X_train,Y_train) #保存成 dot 文件,后面可以用 dot out.dot -T pdf -o out.pdf 转换成图片 with open("out.dot", 'w') as f : f = tree.export_graphviz(clf, out_file = f, feature_names = vec.get_feature_names())
2.5 决策树可视化
当完成一棵树的训练的时候,我们也可以让它可视化展示出来,不过sklearn没有提供这种功能,它仅仅能够让训练的模型保存到dot文件中。但我们可以借助其他工具让模型可视化,先看保存到dot的代码:
from sklearn import tree with open("out.dot", 'w') as f : f = tree.export_graphviz(clf, out_file = f, feature_names = vec.get_feature_names())
决策树可视化我们用Graphviz这个东西。当然需要先用pip安装对应的库类。然后再去官网下载它的一个发行版本,用以将dot文件转化成pdf图片。
官网下载方式如下:
然后进入到上面保存好的dot所在目录,打开cmd运行dot out.dot -T pdf -o out.pdf 命令,pdf 图片就会出现了。
小结:
今天我们介绍了sklearn,决策树模型的各个参数,并且使用sklearn模型对上一节中的例子训练出一个决策树模型,然后用Graphviz让决策树模型可视化。到此,决策树算法算是讲完啦。
不知道大家对于这个决策树的实操掌握的有多少,不清楚的地方,欢迎大家留言,更多的葡萄红学习教程也会继续为大家更新!
相关推荐
- 真的没想到这个python装饰器还能这么写,见也没见过!
-
引言众所周知,python中,装饰器是非常好玩的,你能够在很多场景中看到它。有很多人可能经常会使用他人设计的装饰器,自己却很少设计过几个装饰器。当然也不乏有的大神非常善于设计装饰器。但不管如何,装饰...
- Python 开发必知的 30 款工具(python语言的开发工具)
-
全面解析开发者在Python开发各个阶段可使用的核心工具热门开源工具Python开发涉及多个阶段,因此需要多种工具来管理:依赖管理:pip、Conda和Poetry是常见的选择。性能分析:...
- 快到飞起的Python包管理工具UV:从环境创建到PyPI发布的终极指南
-
尊敬的诸位!我是一名专注于嵌入式开发的物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与AI的无尽可能。"又在等pip安装包?配置国内镜像源也解决不了的...
- Python输出语句print()(python输出语句print(3+5))
-
Python中的输出语句主要通过内置函数print()实现,它可以灵活输出文本、变量、表达式结果等内容到控制台或其他文件。以下是详细介绍及示例:一、print()基本语法print(*object...
- Python range 函数实用指南(python range函数的用法)
-
对话实录小白:(抓狂)我写了foriinrange(5):,为什么只到4?专家:(推眼镜)range是左闭右开区间!记住:包含起点,不包含终点!基础用法三连击1.标准用法#生成0-4p...
- 3个实用的Pycharm小技巧(pycharm新手教程)
-
前言当我们用Pycharm来编写python代码的时候,你是否留意过以下三个技巧,接下来分享给大家。1.技巧一:Pycharm添加addsourcefolder操作1.1需求:我有一个项目,是...
- python从入门到脱坑 输入与输出——print()函数
-
大家好今天开始系统的讲解一些入门课程,遇到不会的也不用想太多,跟着写一遍,学习到新内容是你就会明白.以下是针对Python初学者的print()函数详解,从基础到实用技巧,配合清晰示例:一、最基础用法...
- Python进阶-day11:并发编程基础(python处理高并发)
-
一、学习目标理解线程和进程的区别及其应用场景。掌握Python中threading模块的基本用法。能够编写一个多线程下载器,应用并发编程知识。二、学习内容与时间安排上午(2小时):理论学习1....
- Excel合并100个表格要1小时?Python3秒搞定!附代码
-
###**Python3秒合并100个Excel表格(附完整代码)****别再手动复制粘贴了!用Python一键批量合并,效率提升1200倍!**---####**适用场景**-每月汇...
- GIL锁也拦不住!这个多进程方案让python速度提升400%
-
引言"你的python程序怎么卡死了?"当产品经理第3次拍我桌子时,我终于意识到——在200万行的数据清洗任务面前,GIL锁正在把我的8核CPU变成单核计算器...提前准备为了查看核心...
- Python之进度条模块tqdm使用方法(python制作进度条可运行的代码)
-
tqdm是一个进度条模块,可以很好的描述一个任务的执行过程,并且使用起来也非常方便首先介绍tqdm常用参数:desc-进度条标题total-迭代总次数ncols-进度条总长度ascii-使用A...
- Python 中制作神奇的动态进度条(python编写进度条)
-
在本教程中,我们将学习使用三个用于在Python中创建进度条的流行库:TQDM、alive-progress、progressbar。进度条可以在视觉上为用户提供有关任务进度的反馈,如文件下载、数...
- 用Python编制模拟简单的进度条(python2 进度条)
-
模拟实现进度条很多人经常在各种视频软件里面看到进度条对比,尤其是我们很多技术、数据走在世界的前列,通过这种展示出来,很是振奋、很激动、很有成就感。很多工具都能实现的,我们今天用python模拟看看。...
- 一日一技:python中的string.encode()方法
-
string.encode()方法string.encode()方法返回给定字符串的编码形式,从Python3.0开始,字符串以Unicode格式存储,即字符串中的每个字符都由一个代码点表示。因此...
- python中字符串的操作(python字符串的基本处理)
-
字符串:英文str。表现形式有4种:‘xs’、“xs”、“”“xsxs”“”、‘’‘‘xxx’’’,三引号有个特殊功能,表示注释,跟#一样的功能,(如果字符串本身就有单则不可用单定义...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 真的没想到这个python装饰器还能这么写,见也没见过!
- Python 开发必知的 30 款工具(python语言的开发工具)
- 快到飞起的Python包管理工具UV:从环境创建到PyPI发布的终极指南
- Python输出语句print()(python输出语句print(3+5))
- Python range 函数实用指南(python range函数的用法)
- 3个实用的Pycharm小技巧(pycharm新手教程)
- python从入门到脱坑 输入与输出——print()函数
- Python进阶-day11:并发编程基础(python处理高并发)
- Excel合并100个表格要1小时?Python3秒搞定!附代码
- GIL锁也拦不住!这个多进程方案让python速度提升400%
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)