Langchain支持SKLearnVectorStore存储
off999 2024-10-10 07:50 19 浏览 0 评论
scikit-learn是开源的机器学习算法python库,尤其那个K-近邻算法(K-Nearest Neighbors)更是“家喻户晓”,现在langchain的向量存储也支持SKLearnVectorStore,下面我们来看看怎么使用
1.安装环境
pip install scikit-learn #sk算法库
pip install pandas pyarrow #需要对parquet格式支持
2.如何使用sk-vectorstore
import os
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
#引入SKLearnVectorStore
from langchain.vectorstores import SKLearnVectorStore
from langchain.document_loaders import TextLoader
##文件切割
loader = TextLoader('./data/data_c.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
##向量化model
embeddings = HuggingFaceEmbeddings()
import tempfile
persist_path = os.path.join(tempfile.gettempdir(), 'data_c.parquet')
#创建SKLearnVectorStore
vector_store = SKLearnVectorStore.from_documents(
documents=docs,
embedding=embeddings,
persist_path=persist_path,#持久化目录
serializer='parquet' #存储格式parquet
)
#查询
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_store.similarity_search(query)
print(docs[0].page_content)
##持久化
vector_store.persist()
print('Vector store was persisted to', persist_path)
#加载之前持久化的数据
vector_store_load = SKLearnVectorStore(
embedding=embeddings,
persist_path=persist_path,
serializer='parquet'
)
print('A new instance of vector store was loaded from', persist_path)
#查询
docs = vector_store_load.similarity_search(query)
print(docs[0].page_content)
#清理数据
os.remove(persist_path)
相关推荐
- 实战:用 Python+Flask+Echarts 构建电商实时数据大屏
-
在电商运营中,实时掌握销售趋势、用户行为等核心数据是决策的关键。本文将从实战角度,详解如何用Python+Flask+Echarts技术栈,快速搭建一个支持实时更新、多维度可视化的电商数据大屏,帮...
- DeepSeek完全使用手册:从新手到高手的2000字实操指南
-
一、工具定位与核心功能矩阵(200字)DeepSeek是一款专注于深度推理的强大AI助手,其功能丰富多样,可归纳为4大能力象限:plaintext差异化优势:DeepSeek支持最长达16Ktok...
- Python绘制可爱的图表 cutecharts
-
一个很酷的python手绘样式可视化包——可爱的图表cutecharts。Cutecharts非常适合为图表提供更个性化的触感。Cutecharts与常规的Matplotlib和Seabo...
- 第十二章:Python与数据处理和可视化
-
12.1使用pandas进行数据处理12.1.1理论知识pandas是Python中最常用的数据处理库之一,它提供了高效的数据结构和数据分析工具。pandas的核心数据结构是Serie...
- 5分钟就能做一个Excel动态图表,你确定不学学?(纯gif教学)
-
本文说明下图是一个比较酷炫的Excel动态图表,最难的部分就是用到了一个复选框控件。其实这个控件我很早就见过,但是不会用呀!望洋兴叹。这次呢,我也是借着这个文章为大家讲述一下这个控件的使用。本文没有...
- Python数据可视化:从Pandas基础到Seaborn高级应用
-
数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...
- 如何使用 Python 将图表写入 Excel
-
将Python生成的图表写入Excel文件是数据分析和可视化中常见的需求。Python提供了多种库(如matplotlib、openpyxl和xlsxwriter)来实现这一功能。本文...
- Excel 图表制作太痛苦?用 Python 生成动态交互图表
-
做个动态图表花了3小时?你该换方法了!上周帮销售部做季度汇报图表,Excel操作把我整崩溃了——插入折线图后发现数据源选错,重新选择又得调格式想做动态筛选图表,捣鼓"开发工具"...
- Python Matplotlib 入门教程:可视化数据的基石
-
一、简介Matplotlib是Python中最流行的数据可视化库,提供从简单折线图到复杂3D图形的完整解决方案。其核心优势在于:o灵活性强:支持像素级样式控制o兼容性好:与NumPy、Pa...
- 20种Python数据可视化绘图 直接复制可用
-
本文介绍20种python数据绘图方法,可直接用于科研绘图或汇报用图。1.折线图(LinePlot)-描述数据随时间或其他变量的变化。importmatplotlib.pyplotasp...
- Python os模块完全指南:轻松玩转文件管理与系统操作
-
Pythonos模块完全指南:轻松玩转文件管理与系统操作os模块是Python与操作系统对话的"瑞士军刀",学会它能让你轻松管理文件、操控路径、获取系统信息。本教程通过场景化案例+...
- Python中h5py与netCDF4模块在Anaconda环境的下载与安装
-
本文介绍基于Anaconda环境,下载并安装Python中h5py与netCDF4这两个模块的方法。h5py与netCDF4这两个模块是与遥感图像处理、地学分析等GIS操作息息相关的模块,应用...
- python中的模块、库、包有什么区别?
-
一文带你分清Python模块、包和库。一、模块Python模块(Module),是一个Python文件,以.py结尾,包含了Python对象定义和Python语句。模块能定义函数,类和变...
- centos7 下面使用源码编译的方式安装python3.11
-
centos7下面使用源码编译的方式安装python3.11,步骤如下:cd/root#只是将python3.11的安装包下载到/root目录下wgethttps://www.python.o...
- Python其实很简单 第十四章 模块
-
模块是一组程序代码,可以是别人已经写好的,也可以是自己编写的,但都是已经存在的,在编程时直接使用就可以了。模块机制的最大好处就是程序员不再编写重复的代码,而直接利用已有的成果,这样就能将更多的精力投入...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)