谁是2020年最强Python库?年度Top10出炉
off999 2024-09-14 07:15 23 浏览 0 评论
蕾师师 发自 凹非寺
量子位 报道 | 公众号 QbitAI
2020年已经过去了,国外的一家专门提供Python服务的网站Troy Labs,盘点出了2020年发布的Python库Top10。
上榜的有FastAPI的升级版Typer、将CLI变成彩色的Rich、基于GUI框架的Dear PyGui、还有精简报错信息的PrettyErrors……总有一款是你想要的。
下面就让我们一起来看看吧~
1、Typer
Typer跟FastAPI的原理相同,都是Python上用来构建API服务的一个高性能框架。
它是FastAPI的升级版,不仅能够准确地记录代码,还能够轻松地进行CLI验证。
Typer易于学习和使用,不需要用户阅读复杂的教程文档即可上手。支持编辑器(如VSCode)代码自动补全,提高开发人员的开发效率,减少bug的数量。
其次,Typer还能配合命令行神器Click使用,就可以利用Click的优点和插件,实现更复杂的功能。
开源地址:
https://github.com/tiangolo/typer
2、Rich
谁规定CLI界面一定得是黑白的?它也可以是彩色的。
Rich API不仅能够在终端输出提供丰富的彩色文本和精美的格式,还提供了精美的表格、进度条、编辑器、追踪器、语法高亮等。如下图所示。
它还可以安装在Python REPL上,所有的数据结构都可以漂亮地输出或标注。
总而言之,它是彩色的、漂亮的、强大的。
Rich兼容性也不错,适用于Linux,Mac和Windows等多种系统。真彩色/表情符号可与新的Windows终端一起使用。
但是请注意,Rich必须要Python 3.6.1或以上版本。
开源地址:
https://github.com/willmcgugan/rich
3、Dear PyGui
如上所示,虽然终端应用程序可以做成很漂亮的样子。但是,你可能还需要一个真正的GUI。
Dear PyGui是一个便于使用、功能强大的Python GUI框架。但是它与其他的Python GUI却有着根本上的不同。
它使用了即时模式范式和计算机的GPU来实现动态界面。即时模式范式在视频游戏中非常流行,这意味着它的动态GUI不需要保留任何数据,而是逐帧独立绘制的。同时,它还使用GPU来建构动态界面。
Dear PyGui还可以绘图、创建主题、创建2D游戏,还拥有一些小工具,比如说内置文档、日志记录、源代码查看器之类的,这些小工具可以协助App的开发。
支持它的系统有:Windows 10(DirectX 11),Linux(OpenGL 3)和macOS(Metal)等。
开源地址:
https://github.com/hoffstadt/DearPyGui
4、PrettyErrors
PrettyErrors是一个精简Python错误信息的工具,特点是界面十分简洁友好。
它最显著的功能是支持在终端进行彩色输出,标注出文件栈踪迹,发现错误信息,过滤掉冗余信息,提取出关键部分,并且进行彩色标注,从而提高开发者的效率。
而且它可以不用安装,直接被导入项目中使用,但是需要先配置一些参数,其导入和配置的参数如下:
开源地址:
https://github.com/onelivesleft/PrettyErrors
5、Diagrams
程序员在编程的时候,有时候需要跟同事解释他设计的程序代码之间复杂的结构关系,然而这不是一两句话能说清楚的,需要画表或者做脉络图。
一般情况下,程序员使用GUI工具处理图表,并将文稿进行可视化处理。但是还有更好的方法,比如说使用Diagrams库。
Diagrams让不需要任何设计类工具,直接在Python代码中绘制云系统结构。它们的图标来自多家云服务商,包括AWS, Azure, GCP等。
仅需几行代码,就可以简单地创造出箭头符号和结构图。
由于它使用Graphviz来渲染图,所以还需要先安装好Graphviz。
开源地址:
https://github.com/mingrammer/diagrams
6、Hydra and OmegaConf
在做机器学习项目的时候,需要做一大堆的环境配置工作。因此,在一些复杂的应用程序中,配置管理工作也相应变得复杂。
Hydra可以使配置工作变得简单。它能够从命令行或者配置文件中覆盖部分出来,无需维护相似的配置文件,用组合的方式进行配置,从而加快了实验运行速度。
Hydra兼容性强,拥有含插件的结构,能够很好地与开发者的操作文件融合。它的插件还可以实现直接通过命令行,就把代码发布到AWS或者其他云端系统。
Hydra也离不开OmegaConf,两者关系密不可分,OmegaConf为Hydra的分层配置系统提供了协同的API,二者协同运作可支持YAML、配置文件、对象、CLI参数等。
开源地址:
https://github.com/facebookresearch/hydra
https://github.com/omry/omegaconf
7、PyTorch Lightning
PyTorch Lightning也是Facebook的一个研究成果。它是一个轻巧的PyTorch包装器,用于高性能AI研究,其最重要的特征是能够解析PyTorch代码,让代码研究成分和工程成分的分离。
它的扩展模型可以在任何硬件(CPU、GPU、TPU)上运行,且容易被复制,删除了大量的文件样本,保持了自身的灵活性,运行速度快。
Lightning能够使DL / ML研究的40多个部分实现自动化,例如GPU训练、分布式GPU(集群)训练、TPU训练等等……
因为Lightning将可以将文件自动导出到ONNX或TorchScript,所以它适用于进行快速推理的AI研究员、BERT或者自监督学习的研究团队等。
开源地址:
https://github.com/PyTorchLightning/PyTorch-lightning
8、Hummingbird
Hummingbird是微软的一项研究成果,它能够将已经训练好的ML模型汇编成张量计算,从而不需要设计新的模型。
还允许用户使用神经网络框架(例如PyTorch)来加速传统的ML模型。
它的推理API跟sklearn范例十分相似,都可以重复使用现有的代码,但是它是用Hummingbird生成的代码去实现的。
Hummingbird还在Sklearn API之后提供了一个方便的统一推理API。这样就可以将Sklearn模型与Hummingbird生成的模型互换,而无需更改推理代码。
它之所以被重点关注,还因为它能够支持多种多样的模型和格式。
到目前为止,Hummingbird支持PyTorch、TorchScript、ONNX和TVM等各种ML模型。
开源地址:
https://github.com/microsoft/hummingbird
9、HiPlot
由于ML模型变得越来越复杂,还有很多超参数,于是就需要用到HiPlot。HiPlot是今年3月Facebook发行的一个库,主要用于处理高维数据。
Facebook AI通过几十个超参数和10万多个实验,利用HiPlot,来分析深度神经网络。
它是用平行图和其他的图像方式,帮助AI研究者发现高维数据的相关性和模型,是一款轻巧的交互式可视化工具。
HiPlot与其他可视化工具相比,有其特有的优点:
首先,它的互动性强,因为平行图是交互式的,所以能够满足多种情况下的图像可视化。
其次,它简单易用,可以通过IPython Notebook或者通过带有“ hiplot”命令的服务直接使用。
它还有具有可扩展性。默认情况下,HiPlot的Web服务可以解析CSV或JSON文件,还可以为其提供自定义Python解析器,将实验转换为HiPlot实验。
开源地址:
https://github.com/facebookresearch/hiplot
参考链接:
https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy
10、Scalene
Scalene是一个用于Python脚本的CPU和内存分析器,能够正确处理多线程代码,还能区分Python代码和本机代码的运行时间。
你不需要修改代码,只需运行Scalene脚本,它就会生成一个文本形式的报告,显示出每一行代码的CPU和内存的使用情况。通过这个文本报告,开发人员可以提高代码的效率。
Scalene的速度快、准确率高,还能够对高耗能的代码行进行标注。
开源地址
https://github.com/emeryberger/scalene
除了以上10个,还有多个高性能的Python库被点名了,例如Norfair、Quart、Alibi-detect、Einops……等等,详情查看底部链接。
那么,你今年有发现好用的Python库吗?
如果有的话,请在评论区一起分享一下呀~
参考链接:
https://tryolabs.com/blog/2020/12/21/top-10-python-libraries-of-2020/
https://www.upgrad.com/blog/reasons-why-python-popular-with-developers/
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)