产品经理也能动手实践的AI(四)- 多标签识别,图像分割
off999 2024-10-10 07:56 24 浏览 0 评论
上一篇讲了产品经理也能动手实践的AI(三)- 深入图像识别,在线辨猫,形象的说明了SGD的原理,就是如何将一个线性函数你和到我们预设的散点图上。今天主要讲2个案例,1个核心模块,分别是卫星图像的多标签识别,图片分割着色,数据块这个核心模块。
这也是图像识别的最后一课了,我承认到这里可能就有点枯燥了,因为有很多需要消化的东西,不过我觉得重点是大概理解这是怎么一回事儿,以及把自己关注的点研究明白,不见得每个细节都要在一开始搞明白。
接下来就会讲解NLP和协同过滤,而且这节课也没有什么特别全新的东西,都是细节上的提升或者更详细的讲解。而我印象最深的就是u-net这个模型,以及他的lr(指代Learning Rate学习率,下文都会直接用lr来代替)训练方式,是先增后降。
1.概览
本节课主要讲解的是多标签识别(用卫星图像预测天气),图像分割(用不同颜色区分行人、道路、房子等),还有支持这两种类型的核心模块 - data block。
这是卫星图片,以及对应的标签
这是如何将一副路边的图像,用无人驾驶的视角按类别变成色块
2.1核心流程
- 下载数据(这一节主要来源于公共数据库)
- 创建databunch(data block的核心流程)
- 准备输入的数据
- 划分训练组和验证组数据
- 给输入的数据打标签
- 「可选」变形
- 「可选」增加测试组
- 转化成databunch
- 创建learner
- 开始训练
- 调优
2.2核心数学概念
- U-net:相对于CNN卷积神经网络,有更好的效果,普通的CNN只做到了左侧下降的把图片拆成一片一片的小块的过程。
- Sigmoid函数:又叫做S型生长曲线,是以前神经网络用的最多的函数,现在都用ReLU
- ReLU(rectified linear unit):线性整流函数,是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。
- 通用逼近定理:当有一组线性和非线性函数,你就可以做出一个无线接近任意函数的函数。
2.3核心机器学习概念
- flip翻转:在transform的时候,可以随机水平翻转或者垂直翻转图像,来提高训练的准确度,默认是水平翻转,比如训练识别猫的AI,而识别卫星图像的就可以同时垂直旋转;
- warp透视:和45度拍照显脸小是一个道理,就相当于对一个正面拍摄的照片做了一个透视处理,虽然都是你本人,但是在图像上呈现的效果不同,所以这样的处理可以提高识别准确度;
- normailize规范化:后面会专门讲
- threshold阈值:主要是多标签时用,因为识别时会有N个结果,不像单标签,选最大的那个就行(argmax),这里要选threshold值以上的;
- DataSet:数据集,只有getitem和len属性
- DataLoader:用于把DataSet中的数据,按要求抽取成一个个mini-batch
- DataBunch:训练组DataLoader和验证组DataLoader的组合
- Mixed Precision Training 混合精确训练:创建learner时用16bits代替32bits,需要GPU支持
2.4核心Python、FastAI、Jupyter等命令
- !:是在Jupyter Notebook中执行命令行的操作,如:# ! conda install -y -c haasad eidl7zip
- Pandas:处理表格数据和常用库,比如查看数据:df = pd.read_csv(path/'train_v2.csv')
- partial:Python3的特性,可以非常方便的生成一个具备固定参数的函数,这样代码看起来就更好懂,比如:acc_02 = partial(accuracy_thresh, thresh=0.2)
- .shape:Image.shape 会给出这个tensor的大小,主要是包含channels,类似于维度,这个之后会讲 (channels x height x width)
- .plot:把学习过程的数据打出来,loss,lr,等各种指标
- lambda:匿名函数,即没有函数名的函数,例如输入x返回x+1:result = lambda x:x+1
- 双斜杠:Python里相除取整的意思,比如size = src_size//2
3.1实例详细分析(用卫星图像预测天气)
上一节讲的是通过Google image自己找图片然后自己下载下来,打上标签。这一届直接用Kaggle竞赛提供的数据。
- 下载数据
- 注册Kaggle
- 安装Kaggle下载工具 ! pip install kaggle --upgrade
- 授权
- 创建API Token - kaggle.json
- 下载并传到自己的Jupyter目录
- 接受该卫星项目许可(不然会遇到下载失败情况)
- 下载数据下载 kaggle competitions download -c competition_name -f file_name.
- 解压缩数据 需要安装edil7zip
- 创建DataBunch
- 先养成查看数据的习惯,看目录结构,看数据样本 pd.read_csv
- 准备输入的数据 ImageFileList.from_folder(path)
- 划分训练组和验证组数据 random_split_by_pct(0.2)
- 给输入的数据打标签 label_from_csv()
- 「可选」变形 transform(tfms, size=128)
- 「可选」增加测试组
- 转化成databunch databunch().normalize()
- 训练模型
- 调优
- 核心小技巧:先训练128x128尺寸的图像,然后再用迁移学习,训练256x256尺寸的图像,这样又快又准
3.2实例详细分析(图像分割,用不同颜色区分行人、道路、房子等)
- 下载数据,通过内置的Camvid数据库
- 查看数据,找到一条数据,用open_mask打开看看
- 创建databunch SegmentationItemList.from_folder(path_img)
- 创建learner 使用u-net代替CNN来训练模型
- 开始训练
- 调优
3.3原理详细分析
learn.recorder.plot_losses()
learn.recorder.plot_lr()
为什么lr会先升后降呢,这就是fit_one_cycle做的方式,因为相对而言,这种学习效率更高,形象点说就是先探探路,然后再大步走,感觉方向对了,就逐渐放慢脚步,然后到达那个最优点。如下演示的是以一个固定的lr,如下分别是lr为0.1,0.7,0.99,1.01时的机器的学习路径,看到0.7是最快接近底部,也就是loss最低的时候,而过低的lr和过高的lr都会影响效率,而高到一定程度反而会无法触达底部。
这是一种比较理想的情况,而实际应用中不会有这么平滑的弧度,肯定有各种小坑,而那时,固定的lr很容易陷到某一个小坑中而得到了不够理想的准确度,俗称拟合不足。
所以这里采用了更加动态的lr,只需要设定一个上限值,系统就会自动生成一个lr的抛物曲线,然后得到更准确的模型。
4.最后
本节课还讲了一个用回归模型识别头部中心点的例子,以及如何用IMDB数据预测评论的正负面情绪(NLP),之后的课程有更详细的讲解,所以这里就先不展开。
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)