百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

PyHubWeekly | 第二期:Github上那些简单且值得推荐的Python项目

off999 2024-09-14 07:16 30 浏览 0 评论

前言

上一周,我写了一篇总结GitHub上优质Python项目的文章,文章发出之后在公众号和知乎受到很多同学的喜爱和认可,这有一些出乎我的意料。

思索一下,这的确是一件很值得去做的事情。<!--more-->这一年来我养成了一个每天逛一逛GitHub的习惯,因为我个人对新鲜事物充满着好奇心,或者是有趣的项目、或者是实用的小工具,我期望能够在GitHub上能够遇到我想要的东西。

GitHub是一个鱼龙混杂的地方,上面的确有很多不错的开源项目,但是,更多的是一些灌水的项目,例如,某些教育机构的大作业,例如,那些每天刷榜的中文无聊的项目。因此,虽然我每天都会花费一部分时间去浏览GitHub,但是真正让我内心觉得这个项目“不错”的却少之又少。我想,也许这就是为什么我上一篇文章受到认可的原因吧。

既然这样,我想倒不如花费一部分精力去开辟一些专门介绍GitHub上优质Python项目的版块,名称就叫PyHubWeekly,主要宗旨有两点:

  • 每周更新一次
  • 精选GitHub上优质Python项目

对于这个模块,我的想法是不追求数量而追求质量,换句话说,也许有的时候能介绍10个项目,有的时候只介绍1个项目,不会为了拼凑数量而一味的去美化一个项目,把它描绘的天花乱坠。也许有一天Python被淘汰了,而且优质的项目有穷有尽,再或者各位关注者对于这类文章失去了兴趣,那样的话,PyHubWeekly这个版块也就走到了尽头。

另外,针对PyHubWeekly,我的定位是通过每篇文章去介绍一些有趣,值得去了解的GitHub项目,因此,对于每个项目不会去深入介绍,会简单的介绍一些它的功能以及它的特点。如果其中我个人认为哪个项目非常不错,或者各位同学对于哪个项目特别感兴趣,我会单独再写一篇详细介绍这个项目的文章。

当然,无论写哪方面的文章,出发点都会坚持自己的初心,坚持原创、坚持与众不同,希望自己分享能够切实的帮助到需要的同学。

下面就开始介绍本期的5个项目。

1. Gooey

Star:8.5k

这是一个将Python 2或3控制台程序转换为GUI应用程序工具,

Gooey通过简单的在argarse上调用装饰器的方式就可以实现程序的界面化,如果需要进行更精细的调整,则可以使用嵌入式替换GooeyParser代替ArgumentParser,

2. memory_profiler

Star:2k

Python是一门相对简单的编程语言,这里所说的简单是指入门简单。因此,很多人忽略了程序底层的内容,例如,空间复杂度、时间复杂度等。对于很多人来说写完程序能够跑通即可,但是一个好的程序要兼备考虑程序的复杂度、内存占用等。

这是一个依赖于psutil的python模块,用于监视进程的内存消耗,以及对python程序的内存消耗进行逐行分析。

@profile
def my_func():
    a = [1] * (10 ** 6)
    b = [2] * (2 * 10 ** 7)
    del b
    return a
?
if __name__ == '__main__':
    my_func()

执行程序,

$ python -m memory_profiler example.py
Line #    Mem usage  Increment   Line Contents
==============================================
     3                           @profile
     4      5.97 MB    0.00 MB   def my_func():
     5     13.61 MB    7.64 MB       a = [1] * (10 ** 6)
     6    166.20 MB  152.59 MB       b = [2] * (2 * 10 ** 7)
     7     13.61 MB -152.59 MB       del b
     8     13.61 MB    0.00 MB       return a

3. pyecharts

Star:7.8k

在Python开发中,提到画图应该十有八九会想到matplotlib,它是一个老牌且强大的绘图库,但是,在使用过程中有一些弊端,例如,不适合离线查看、支持的绘图接口较为单一。

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。它能够把绘图结果保存为一个html文件,能够动态展示绘图结果,且随时可以打开查看。另外,它支持的绘图类型非常丰富。

4. wtfpython

Star:18.6k

wtfpython这个Python项目两年前就有所耳闻,首先说一下它的全名,比较粗俗“What the f*ck Python!”,就如同前面所说的那样,虽然很多人认为Python非常容易,但是它也有很多不为人知的特性。

有很多点按照我们的理解应该是这样的,但是当运行之后却发现和我期望的结果有很大出入,具体问题出现在哪了,却很难找出来。wtfpython这个项目就总结了这些不为人知的特性,能够让你发现更多Python令人惊奇的地方。

例如,下面这个例子,

some_dict = {}
some_dict[5.5] = "Ruby"
some_dict[5.0] = "JavaScript"
some_dict[5] = "Python"

输出,

>>> some_dict[5.5]
"Ruby"
>>> some_dict[5.0]
"Python"
>>> some_dict[5]
"Python"

按照正常的结果some_dict[5.0]不是应该输出“JavaScript”吗?为什么输出了“Python”?下面就是解释,

5. tqdm

Star:12.9k

tqdm是一个Python进度条工具,如果刚开始学习Python时,我会对它不屑一顾,编程语言本身还没有学明白,为什么要用这些花里胡哨的东西?简直就是鸡肋!

但是,当开发项目久了以后才发现,它有着不可替代的价值。就如同我们排号吃饭一样,我们希望实时的监控着当前事件进行到什么程度了,Python开发也是这样,我们不能一直把它挂在那里,留给我们一个空白的shell,具体是进程死掉了,还是读数据库时出现了问题,都不清楚,有着这个进度条,能够对我们的运行过程一目了然。


相关推荐

Python Flask 容器化应用链路可观测

简介Flask是一个基于Python的轻量级Web应用框架,因其简洁灵活而被称为“微框架”。它提供了Web开发所需的核心功能,如请求处理、路由管理等,但不会强制开发者使用特定的工具或库。...

Python GUI应用开发快速入门(python开发软件教程)

一、GUI开发基础1.主流GUI框架对比表1PythonGUI框架比较框架特点适用场景学习曲线Tkinter内置库,简单小型应用,快速原型平缓PyQt功能强大,商用许可专业级桌面应用陡峭PySi...

【MCP实战】Python构建MCP应用全攻略:从入门到实战!

实战揭秘:Python Toga 打造跨平台 GUI 应用的神奇之旅

在Python的世界里,GUI(图形用户界面)开发工具众多,但要找到一款真正跨平台、易于使用且功能强大的工具并不容易。今天,我们就来深入探讨一下Toga——一款Python原生、操作系统原...

python应用目录规划(python的目录)

Python大型应用目录结构规划(企业级最佳实践)核心原则模块化:按业务功能拆分,高内聚低耦合可扩展性:支持插件机制和动态加载环境隔离:清晰区分开发/测试/生产环境自动化:内置标准化的构建测试部署流...

Python图形化应用开发框架:PyQt开发简介

PyQt概述定义:PyQt是Python绑定Qt框架的工具集,用于开发跨平台GUI应用程序原理:通过Qt的C++库提供底层功能,PyQt使用SIP工具生成Python绑定特点:支持Windows/ma...

[python] 基于PyOD库实现数据异常检测

PyOD是一个全面且易于使用的Python库,专门用于检测多变量数据中的异常点或离群点。异常点是指那些与大多数数据点显著不同的数据,它们可能表示错误、噪声或潜在的有趣现象。无论是处理小规模项目还是大型...

Python、Selenium 和 Allure 进行 UI 自动化测试的简单示例脚本

环境准备确保你已经安装了以下库:SeleniumAllurepytest你可以使用以下命令安装所需库:pipinstallseleniumallure-pytestpytest示例代码下面的代...

LabVIEW 与 Python 融合:打造强大测试系统的利器

在现代测试系统开发领域,LabVIEW和Python各自凭借独特优势占据重要地位。LabVIEW以图形化编程、仪器控制和实时系统开发能力见长;Python则凭借丰富的库资源、简洁语法和强大数...

软件测试进阶之自动化测试——python+appium实例

扼要:1、了解python+appium进行APP的自动化测试实例;2、能根据实例进行实训操作;本课程主要讲述用python+appium对APP进行UI自动化测试的例子。appium支持Androi...

Python openpyxl:读写样式Excel一条龙,测试报表必备!

无论你是测试工程师、数据分析师,还是想批量导出Excel的自动化工作者,只需一个库openpyxl,即可高效搞定Excel的各种需求!为什么选择openpyxl?支持.xlsx格式...

Python + Pytest 测试框架——数据驱动

引言前面已经和大家介绍过Unittest测试框架的数据驱动框架DDT,以及其实现原理。今天和大家分享的是Pytest测试框架的数据驱动,Pytest测试框架的数据驱动是由pytest自...

这款开源测试神器,圆了我玩游戏不用动手的梦想

作者:HelloGitHub-Anthony一天我在公司用手机看游戏直播,同事问我在玩什么游戏?我和他说在看直播,他恍然大悟:原来如此,我还纳闷你玩游戏,咋不用动手呢。。。。一语惊醒梦中人:玩游戏不用...

Python单元测试框架对比(pycharm 单元测试)

一、核心框架对比特性unittest(标准库)pytest(主流第三方)nose2(unittest扩展)doctest(文档测试)安装Python标准库pipinstallpytestp...

利用机器学习,进行人体33个2D姿态检测与评估

前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制...

取消回复欢迎 发表评论: