这里有8个流行的Python可视化工具包,你喜欢哪个?
off999 2024-10-12 06:09 44 浏览 0 评论
喜欢用 Python 做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的。下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中。快来试试你喜欢哪个?
用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?也许你想给某人展示一个内在的形象,一个中庸的形象?
本文将介绍一些常用的 Python 可视化包,包括这些包的优缺点以及分别适用于什么样的场景。这篇文章只扩展到 2D 图,为下一次讲 3D 图和商业报表(dashboard)留了一些空间,不过这次要讲的包中,许多都可以很好地支持 3D 图和商业报表。
Matplotlib、Seaborn 和 Pandas
把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas 中的 df.plot() 时,用的其实是别人用 Matplotlib 写的代码。因此,这些图在美化方面是相似的,自定义图时用的语法也都非常相似。
当提到这些可视化工具时,我想到三个词:探索(Exploratory)、数据(Data)、分析(Analysis)。这些包都很适合第一次探索数据,但要做演示时用这些包就不够了。
Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。
Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相关工具所做的示例图:
在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。为了展示结果,我将每个球队的工资用颜色标成条形图,来说明球员加入哪一支球队才能获得更好的待遇。
import seaborn as sns
import matplotlib.pyplot as plt
color_order = ['xkcd:cerulean', 'xkcd:ocean',
'xkcd:black','xkcd:royal purple',
'xkcd:royal purple', 'xkcd:navy blue',
'xkcd:powder blue', 'xkcd:light maroon',
'xkcd:lightish blue','xkcd:navy']
sns.barplot(x=top10.Team,
y=top10.Salary,
palette=color_order).set_title('Teams with Highest Median Salary')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
第二个图是回归实验残差的 Q-Q 图。这张图的主要目的是展示如何用尽量少的线条做出一张有用的图,当然也许它可能不那么美观。
import matplotlib.pyplot as plt
import scipy.stats as stats
#model2 is a regression model
log_resid = model2.predict(X_test)-y_test
stats.probplot(log_resid, dist="norm", plot=plt)
plt.title("Normal Q-Q plot")
plt.show()
最终证明,Matplotlib 及其相关工具的效率很高,但就演示而言它们并不是最好的工具。
ggplot(2)
你可能会问,「Aaron,ggplot 是 R 中最常用的可视化包,但你不是要写 Python 的包吗?」。人们已经在 Python 中实现了 ggplot2,复制了这个包从美化到语法的一切内容。
在我看过的所有材料中,它的一切都和 ggplot2 很像,但这个包的好处是它依赖于 Pandas Python 包。不过 Pandas Python 包最近弃用了一些方法,导致 Python 版本不兼容。
如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。
也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。
ggplot2(我觉得也包括 Python 的 ggplot)举足轻重的原因是它们用「图形语法」来构建图片。基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。
下面是 ggplot 代码的简单示例。我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。
#All Salaries ggplot(data=df, aes(x=season_start, y=salary, colour=team)) + geom_point() + theme(legend.position="none") + labs(title = 'Salary Over Time', x='Year', y='Salary ($)')
Bokeh
Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码:
import pandas as pd from bokeh.plotting import figure from bokeh.io import show # is_masc is a one-hot encoded dataframe of responses to the question: # "Do you identify as masculine?" #Dataframe Prep counts = is_masc.sum() resps = is_masc.columns #Bokeh p2 = figure(title='Do You View Yourself As Masculine?', x_axis_label='Response', y_axis_label='Count', x_range=list(resps)) p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black') show(p2) #Pandas counts.plot(kind='bar')
用 Bokeh 表示调查结果
红色的条形图表示 538 个人关于「你认为自己有男子汉气概吗?」这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。
我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。
用 Pandas 表示相同的数据
蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。
Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。
Bokeh 还是制作交互式商业报表的绝佳工具。
Plotly
Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。Ploty 入门时有一些要注意的点:
- 安装时要有 API 秘钥,还要注册,不是只用 pip 安装就可以;
- Plotly 所绘制的数据和布局对象是独一无二的,但并不直观;
- 图片布局对我来说没有用(40 行代码毫无意义!)
但它也有优点,而且设置中的所有缺点都有相应的解决方法:
- 你可以在 Plotly 网站和 Python 环境中编辑图片;
- 支持交互式图片和商业报表;
- Plotly 与 Mapbox 合作,可以自定义地图;
- 很有潜力绘制优秀图形。
以下是我针对这个包编写的代码:
#plot 1 - barplot # **note** - the layout lines do nothing and trip no errors data = [go.Bar(x=team_ave_df.team, y=team_ave_df.turnovers_per_mp)] layout = go.Layout( title=go.layout.Title( text='Turnovers per Minute by Team', xref='paper', x=0 ), xaxis=go.layout.XAxis( title = go.layout.xaxis.Title( text='Team', font=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ) ), yaxis=go.layout.YAxis( title = go.layout.yaxis.Title( text='Average Turnovers/Minute', font=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ) ), autosize=True, hovermode='closest') py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite') #plot 2 - attempt at a scatterplot data = [go.Scatter(x=player_year.minutes_played, y=player_year.salary, marker=go.scatter.Marker(color='red', size=3))] layout = go.Layout(title="test", xaxis=dict(title='why'), yaxis=dict(title='plotly')) py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot2', sharing='public') [Image: image.png]
表示不同 NBA 球队每分钟平均失误数的条形图。
表示薪水和在 NBA 的打球时间之间关系的散点图
总体来说,开箱即用的美化工具看起来很好,但我多次尝试逐字复制文档和修改坐标轴标签时却失败了。但下面的图展示了 Plotly 的潜力,以及我为什么要在它身上花好几个小时:
Plotly 页面上的一些示例图
Pygal
Pygal 的名气就不那么大了,和其它常用的绘图包一样,它也是用图形框架语法来构建图像的。由于绘图目标比较简单,因此这是一个相对简单的绘图包。使用 Pygal 非常简单:
- 实例化图片;
- 用图片目标属性格式化;
- 用 figure.add() 将数据添加到图片中。
我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。必须要用 render_to_file 选项,然后在 web 浏览器中打开文件,才能看见我刚刚构建的东西。
最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。
Networkx
虽然 Networkx 是基于 matplotlib 的,但它仍是图形分析和可视化的绝佳解决方案。图形和网络不是我的专业领域,但 Networkx 可以快速简便地用图形表示网络之间的连接。以下是我针对一个简单图形构建的不同的表示,以及一些从斯坦福 SNAP 下载的代码(关于绘制小型 Facebook 网络)。
我按编号(1~10)用颜色编码了每个节点,代码如下:
options = {
'node_color' : range(len(G)),
'node_size' : 300,
'width' : 1,
'with_labels' : False,
'cmap' : plt.cm.coolwarm
}
nx.draw(G, **options)
用于可视化上面提到的稀疏 Facebook 图形的代码如下:
import itertools
import networkx as nx
import matplotlib.pyplot as plt
f = open('data/facebook/1684.circles', 'r')
circles = [line.split() for line in f]
f.close()
network = []
for circ in circles:
cleaned = [int(val) for val in circ[1:]]
network.append(cleaned)
G = nx.Graph()
for v in network:
G.add_nodes_from(v)
edges = [itertools.combinations(net,2) for net in network]
for edge_group in edges:
G.add_edges_from(edge_group)
options = {
'node_color' : 'lime',
'node_size' : 3,
'width' : 1,
'with_labels' : False,
}
nx.draw(G, **options)
这个图形非常稀疏,Networkx 通过最大化每个集群的间隔展现了这种稀疏化。
有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。
原文链接:https://towardsdatascience.com/reviewing-python-visualization-packages-fa7fe12e622b
本文为机器之心编译,转载请联系本公众号获得授权。
?------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com
相关推荐
- 手机金山毒霸下载(下载一个金山毒霸)
-
1,金山毒霸的默认安装目录文件为“kingsoftantivirus”,所以安装时没有更改过安装路径的话,金山毒霸在电脑上的文件夹名称是“kingsoftantivirus”。2,金山毒霸默认安装...
- 腾讯游戏app下载(腾讯游戏app)
-
为什么电脑版的腾讯会议下载完以后就被阻止了?如果你遇到这种情况,可能是因为你的电脑上面下载的腾讯会议不是。正规渠道下载的,或者不是正版的腾讯会议,所以你下载的腾讯会议。有可能中了病毒,你可以用你的电脑...
- 亚马逊电子书免费下载网站(亚马逊电子书免费资源)
-
在亚马逊电子书停运后,你可以尝试以下方法下载小说: 1.使用其他电子书平台:有很多其他的电子书平台,如KindleUnlimited、AppleBooks、GooglePlayBo...
- 什么小说软件最全还免费(笔趣阁app下载)
-
最近新出了一个小说阅读器,好像叫新免小说阅读器,我自己也去下载了来看了一下,却是还挺不错的,总结了一下几个有点:1、完全免费,确实是免费的,没有充值的接口,问过客服也说是一款免费的软件,不像很多小说,...
- 游戏中心app(网易游戏中心app)
-
OPPO游戏中心下载游戏的方法:你可以点击顶部搜索栏输入游戏名称直接下载,也能在游戏中心的「精选」页面查看每日推荐游戏。点击「分类」筛选心仪的游戏,「排行」页面浏览热门内容。碰到喜欢的游戏,点击「安装...
-
- 迅雷播放器(迅雷播放器不支持此类视频文件怎么办)
-
特点不同、优势不同,一个是app一个是插件一、指代不同1、迅雷看看播放器:是迅雷公司出品的一款在线播放插件,采用P2P点对点传输技术,可以在线流畅观看高清晰电影。2、迅雷影音:是一款迅雷公司制作的视频播放软件,可播放各类高清视频。二、特点不...
-
2026-01-24 04:51 off999
- 浏览器在线使用(在浏览器上)
-
浏览器用法:1、打开我的电脑,在我的电脑中找到【C盘】进入到C盘文件夹中;2、在C盘文件夹中,找到【ProgramFiles(X86)】这个文件夹,进入到其中; 1、点击开始菜单,接着找...
- 斗地主网页版(欢乐斗地主网页版)
-
1.是两个版本在运行2.这是因为电脑欢乐斗地主可以有不同的版本,每个版本可能有不同的功能或者设计,所以可以同时存在多个版本在运行。3.这种情况下,可能是为了满足不同用户的需求或者提供不同的游戏体...
- 比早游戏更好的平台(早游戏相似的游戏盒)
-
你好,这边推荐你用及时用车,及时用车这款app目前挂靠在高的旗下平台。双方正在推出免佣活动。早高峰7点~9点这个时间段及时用车,这边是免收佣金的,乘客付多少,司机得多少,可以轻松跑出高额流水。其次,中...
- qq下载中心(qq下载.cn)
-
可以通过解除保护模式页面,查看QQ帐号进入保护模式的原因,及获取恢复QQ帐号正常使用的方法。1.可以在realme手机中出场自带的软件商店中搜索游戏中心下载安装即可。2.可在设置-应用-系统可卸载应...
-
- qq轻聊版旧版本可登录(qq轻聊版旧版本下载2018)
-
楼主您好!①先登录正式版,在设置里面关闭设备安全锁,退出账号②下载轻聊版进行登录,重新开启安全锁主要是QQ轻聊版比较适合想我这样的学生党,这样能够安心学习还能接收消息,内存也比较少电脑版的有的可以,有的就不行手机版的大部分是不可以的,会提...
-
2026-01-24 03:15 off999
- 诺基亚老款手机(诺基亚5g手机新款上市)
-
1999年上市3210(GSM)6150(GSM)8810(GSM)1998年上市1610(GSM)2110(GSM)232(其他)3810(GSM)5110(GSM)6110(GSM)8110+(G...
- 模拟经营开店的游戏(模拟经营开店的游戏大全)
-
奇趣多多的餐厅经营玩法让每一个玩家都能够在游戏之中通过经营来赚取财富,每一天都会有新的惊喜等待着大家,而且每一种玩法都会给玩家带来福利,让你能够通过不断的挑战来赚取到高额的红包奖励,而且游戏之中设计有...
- 精准客户电话号码资源(精准客户电话号码渠道)
-
微信不同加人方式有不同的限制:1、附近人功能。加人上限15人/天,频率3次/天,间隔时间1-2小时。2、摇一摇功能。加人上限15人/天,频率3次/天,间隔时间1-2小时。3、通讯录搜索功能。加人上限6...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
linux软件(linux软件图标)
-
win7系统还原步骤图解(win7还原电脑系统的步骤)
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
