这里有8个流行的Python可视化工具包,你喜欢哪个?
off999 2024-10-12 06:09 19 浏览 0 评论
喜欢用 Python 做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的。下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中。快来试试你喜欢哪个?
用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?也许你想给某人展示一个内在的形象,一个中庸的形象?
本文将介绍一些常用的 Python 可视化包,包括这些包的优缺点以及分别适用于什么样的场景。这篇文章只扩展到 2D 图,为下一次讲 3D 图和商业报表(dashboard)留了一些空间,不过这次要讲的包中,许多都可以很好地支持 3D 图和商业报表。
Matplotlib、Seaborn 和 Pandas
把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas 中的 df.plot() 时,用的其实是别人用 Matplotlib 写的代码。因此,这些图在美化方面是相似的,自定义图时用的语法也都非常相似。
当提到这些可视化工具时,我想到三个词:探索(Exploratory)、数据(Data)、分析(Analysis)。这些包都很适合第一次探索数据,但要做演示时用这些包就不够了。
Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。
Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相关工具所做的示例图:
在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。为了展示结果,我将每个球队的工资用颜色标成条形图,来说明球员加入哪一支球队才能获得更好的待遇。
import seaborn as sns import matplotlib.pyplot as plt color_order = ['xkcd:cerulean', 'xkcd:ocean', 'xkcd:black','xkcd:royal purple', 'xkcd:royal purple', 'xkcd:navy blue', 'xkcd:powder blue', 'xkcd:light maroon', 'xkcd:lightish blue','xkcd:navy'] sns.barplot(x=top10.Team, y=top10.Salary, palette=color_order).set_title('Teams with Highest Median Salary') plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
第二个图是回归实验残差的 Q-Q 图。这张图的主要目的是展示如何用尽量少的线条做出一张有用的图,当然也许它可能不那么美观。
import matplotlib.pyplot as plt import scipy.stats as stats #model2 is a regression model log_resid = model2.predict(X_test)-y_test stats.probplot(log_resid, dist="norm", plot=plt) plt.title("Normal Q-Q plot") plt.show()
最终证明,Matplotlib 及其相关工具的效率很高,但就演示而言它们并不是最好的工具。
ggplot(2)
你可能会问,「Aaron,ggplot 是 R 中最常用的可视化包,但你不是要写 Python 的包吗?」。人们已经在 Python 中实现了 ggplot2,复制了这个包从美化到语法的一切内容。
在我看过的所有材料中,它的一切都和 ggplot2 很像,但这个包的好处是它依赖于 Pandas Python 包。不过 Pandas Python 包最近弃用了一些方法,导致 Python 版本不兼容。
如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。
也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。
ggplot2(我觉得也包括 Python 的 ggplot)举足轻重的原因是它们用「图形语法」来构建图片。基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。
下面是 ggplot 代码的简单示例。我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。
#All Salaries ggplot(data=df, aes(x=season_start, y=salary, colour=team)) + geom_point() + theme(legend.position="none") + labs(title = 'Salary Over Time', x='Year', y='Salary ($)')
Bokeh
Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码:
import pandas as pd from bokeh.plotting import figure from bokeh.io import show # is_masc is a one-hot encoded dataframe of responses to the question: # "Do you identify as masculine?" #Dataframe Prep counts = is_masc.sum() resps = is_masc.columns #Bokeh p2 = figure(title='Do You View Yourself As Masculine?', x_axis_label='Response', y_axis_label='Count', x_range=list(resps)) p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black') show(p2) #Pandas counts.plot(kind='bar')
用 Bokeh 表示调查结果
红色的条形图表示 538 个人关于「你认为自己有男子汉气概吗?」这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。
我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。
用 Pandas 表示相同的数据
蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。
Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。
Bokeh 还是制作交互式商业报表的绝佳工具。
Plotly
Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。Ploty 入门时有一些要注意的点:
- 安装时要有 API 秘钥,还要注册,不是只用 pip 安装就可以;
- Plotly 所绘制的数据和布局对象是独一无二的,但并不直观;
- 图片布局对我来说没有用(40 行代码毫无意义!)
但它也有优点,而且设置中的所有缺点都有相应的解决方法:
- 你可以在 Plotly 网站和 Python 环境中编辑图片;
- 支持交互式图片和商业报表;
- Plotly 与 Mapbox 合作,可以自定义地图;
- 很有潜力绘制优秀图形。
以下是我针对这个包编写的代码:
#plot 1 - barplot # **note** - the layout lines do nothing and trip no errors data = [go.Bar(x=team_ave_df.team, y=team_ave_df.turnovers_per_mp)] layout = go.Layout( title=go.layout.Title( text='Turnovers per Minute by Team', xref='paper', x=0 ), xaxis=go.layout.XAxis( title = go.layout.xaxis.Title( text='Team', font=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ) ), yaxis=go.layout.YAxis( title = go.layout.yaxis.Title( text='Average Turnovers/Minute', font=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ) ), autosize=True, hovermode='closest') py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite') #plot 2 - attempt at a scatterplot data = [go.Scatter(x=player_year.minutes_played, y=player_year.salary, marker=go.scatter.Marker(color='red', size=3))] layout = go.Layout(title="test", xaxis=dict(title='why'), yaxis=dict(title='plotly')) py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot2', sharing='public') [Image: image.png]
表示不同 NBA 球队每分钟平均失误数的条形图。
表示薪水和在 NBA 的打球时间之间关系的散点图
总体来说,开箱即用的美化工具看起来很好,但我多次尝试逐字复制文档和修改坐标轴标签时却失败了。但下面的图展示了 Plotly 的潜力,以及我为什么要在它身上花好几个小时:
Plotly 页面上的一些示例图
Pygal
Pygal 的名气就不那么大了,和其它常用的绘图包一样,它也是用图形框架语法来构建图像的。由于绘图目标比较简单,因此这是一个相对简单的绘图包。使用 Pygal 非常简单:
- 实例化图片;
- 用图片目标属性格式化;
- 用 figure.add() 将数据添加到图片中。
我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。必须要用 render_to_file 选项,然后在 web 浏览器中打开文件,才能看见我刚刚构建的东西。
最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。
Networkx
虽然 Networkx 是基于 matplotlib 的,但它仍是图形分析和可视化的绝佳解决方案。图形和网络不是我的专业领域,但 Networkx 可以快速简便地用图形表示网络之间的连接。以下是我针对一个简单图形构建的不同的表示,以及一些从斯坦福 SNAP 下载的代码(关于绘制小型 Facebook 网络)。
我按编号(1~10)用颜色编码了每个节点,代码如下:
options = { 'node_color' : range(len(G)), 'node_size' : 300, 'width' : 1, 'with_labels' : False, 'cmap' : plt.cm.coolwarm } nx.draw(G, **options)
用于可视化上面提到的稀疏 Facebook 图形的代码如下:
import itertools import networkx as nx import matplotlib.pyplot as plt f = open('data/facebook/1684.circles', 'r') circles = [line.split() for line in f] f.close() network = [] for circ in circles: cleaned = [int(val) for val in circ[1:]] network.append(cleaned) G = nx.Graph() for v in network: G.add_nodes_from(v) edges = [itertools.combinations(net,2) for net in network] for edge_group in edges: G.add_edges_from(edge_group) options = { 'node_color' : 'lime', 'node_size' : 3, 'width' : 1, 'with_labels' : False, } nx.draw(G, **options)
这个图形非常稀疏,Networkx 通过最大化每个集群的间隔展现了这种稀疏化。
有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。
原文链接:https://towardsdatascience.com/reviewing-python-visualization-packages-fa7fe12e622b
本文为机器之心编译,转载请联系本公众号获得授权。
?------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com
相关推荐
- Python自动化脚本应用与示例(python自动化脚本教程)
-
Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作O批量重命名文件...
- 如何使用Python实现一个APP(如何用python做一个程序)
-
要使用Python实现一个APP,你可以选择使用一些流行的移动应用开发框架,如Kivy、PyQt或Tkinter。这里以Kivy为例,它是一个跨平台的Python框架,可以用于创建漂亮的图形用户界面(...
- 免费定时运行Python程序并存储输出文档的服务推荐
-
免费定时运行Python程序并存储输出文档的服务推荐以下是几种可以免费定时运行Python程序并存储输出结果的云服务方案:1.PythonAnywhere特点:提供免费的Python托管环境支持定时...
- 【Python程序开发系列】如何让python脚本一直在后台保持运行
-
这是我的第385篇原创文章。一、引言让Python脚本在后台持续运行,有几种常见的方式,具体方式可以根据你的系统环境和需求选择。二、Linux或macOS系统2.1使用nohup命令no...
- 运行和执行Python程序(运行python的程序)
-
一、Python是一种解释型的脚本编程语言,这样的编程语言一般支持两种代码运行方式:交互式编程在命令行窗口中直接输入代码,按下回车键就可以运行代码,并立即看到输出结果;执行完一行代码,你还可以继续...
- Python 初学者指南:计算程序的运行时长
-
在编写Python程序时,了解程序的运行时长是一项很有用的技能。这不仅能帮助你评估代码的效率,还能在优化程序性能时提供关键的数据支持。对于初学者来说,计算程序运行时长其实并不复杂,接下来就让我们看...
- pyest+appium实现APP自动化测试,思路全总结在这里
-
每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01appium环境搭建安装nodejshttp://nodej...
- 血脉觉醒后,编程小白我是如何通过Deepseek和Trae轻松开发软件的
-
以下就是作为一个编程小白的我,是如何一步步开发软件的保姆级教程,请点赞收藏:第一步:打开#deepseek#(首先关闭深度思考和联网搜索)输入或复制你要让它做一个什么样软件的要求和提示词(你可以先用...
- 我用Deepseek+Trae写的python小软件,小白也能轻松用上模型啦!
-
利用AI大模型deepseek,搭配TraeCN,用半个小时做了一个本地Ollama安装部署和一键卸载的小工具,哈哈哈!感觉还不错#deepseek#一直想做一个本地Ollama安装部署和一键卸载...
- 在安卓设备上运行Python的方法(安卓能运行python吗)
-
技术背景在安卓设备上运行Python可以为开发者提供更多的开发选择和灵活性,能够利用Python丰富的库和简洁的语法来开发各种应用,如游戏、脚本工具等。然而,由于安卓系统原生不支持Python,需要借...
- 零基础小白,DeepSeek全自动编程,超详细提示词,一键生成软件!
-
我前面发表了文章,详细说了编程零基础小白,如何利用DeepSeek进行编程的全过程,感兴趣的可以去看看:DeepSeek全自动编程很多人不会写提示词,不知道怎么开始对话。话不多说,请先看下图中的对话,...
- 小白用DeepSeek+Python编写软件(用python制作软件)
-
周末无事,用DeepSeek生成全部代码,写了一个mp3音乐播放器,几分钟搞定,DeepSeek确实太强大了。我的提示语是这么写的:“请用Python语言写一个音乐播放器,支持常见音乐格式,我是Pyt...
- 零基础使用DeepSeek开发Windows应用程序,超简单超实用!
-
你敢相信,我居然用DeepSeek开发了一个能用的Windows软件!整个过程就像和学霸同桌组队做作业,我负责提需求,DeepSeek负责写代码改bug,全程碰到任何问题直接丢给DeepSeek即可。...
- 第二篇:如何安装Python并运行你的第一个程序
-
欢迎回到我的Python入门教程系列!在上一篇中,我们讨论了为什么Python是一门值得学习的编程语言。今天,我们将迈出第一步:安装Python并运行你的第一个程序。无论你是Windows、macOS...
- Python 运行,带你找入口,快速读懂程序
-
有C或Java编程开发经验的软件开发者,初次接触python程序,当你想快速读懂python项目工程时,是否觉得python程序有些太过随意,让你看有些无所适从,进而有些茫然。这是...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Python自动化脚本应用与示例(python自动化脚本教程)
- 如何使用Python实现一个APP(如何用python做一个程序)
- 免费定时运行Python程序并存储输出文档的服务推荐
- 【Python程序开发系列】如何让python脚本一直在后台保持运行
- 运行和执行Python程序(运行python的程序)
- Python 初学者指南:计算程序的运行时长
- pyest+appium实现APP自动化测试,思路全总结在这里
- 血脉觉醒后,编程小白我是如何通过Deepseek和Trae轻松开发软件的
- 我用Deepseek+Trae写的python小软件,小白也能轻松用上模型啦!
- 在安卓设备上运行Python的方法(安卓能运行python吗)
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)